Simulation Modeling

Introduction

In many situations a modeler it uriahle t6 cosseruet an anabytic symbolic !
explaining the behavior being observed beczse of e h”.ff\\(” 'm: ) m"ﬁ‘l ailmm_ﬁfly ;'
proposed explicative model, Vet if it necessary oo r,..;:w f :;,:_?h\ ‘t v l.]";-l‘_. n1llr:|_L;Lrtf.uI|!}‘f of the
modeler may conduct expenments (or gather »‘1 ,,‘,,H:{,l ,t.l;L ‘ml‘hlmmmfhc i ]
the dependent vartablels) and sclected valoes of y:’ “*,‘JA_,".".;;,“,;, ,fu:l t;‘;.u:“'f\h‘rph':mwwr‘* 0Lk
range. We constructed empincal models based cm codiog il ;L;” ,,; {f;,d ‘1: : \{w'lr m. “,;'."f’
the data, the modeler may obxerve the bebavsor directly l.‘n' mi:;*r sl m[-t.: ,}fu. ;Ju\r“ Vl,::
might be duplicated (possibly in a scaled-dow e v wnder nnlx"czlh:d ( :lm'nhti«:m" ’:' \::
will do when predicting the size of craters in Section (44 | e ;

In some circumstances, it may not be feastble eiher o observe the behavior directly ]
or to conduct experiments. For instance, consider the sérvice provuded by a %yx(i."lﬂ of B
elevators during morning rush hour. After identifying an appropriate problem and defining l
what is meant by good service, we might suggest some alternative delvery schemes, 5uc}‘1
as assigning elevators to even and odd floors or using express elevators. Theoretical Ly, each
alternative could be tested for some period of time to determune which one provided the

best service for particular arrival and destination partems of the customers. However, such ;
a procedure would probably be very disruptive becauwse it would be necessary to harass
the customers constantly as the required statistics were collected. Moreover, the customers |
I
{

would become very confused because the elevator delivery system would keep changing,
Another problem concerns lesting alternative schemes for controlling automobile traffic in
a large city. 1t would be impractical to constantly change directions of the one-way streets

and the distribution of traffic signals to conduct tests.

In still other situations, the system for which altemative procedures need to be tested
may not even exist yel. An example is the situation of several proposed communications
networks, with the problem of determining which is best for a given office building. Still
another example is the problem of determining locations of machines in a new industrial
plant. The cost of conducting experiments may be prohibitive. This is the case when an
agency tries to predict the effects of various alternatives for protecting and evacuating the
population in case of failure of a nuclear power plant.

In cases where the behavior cannot be explained analytically or data collected directly,
the modeler might simulate the behavior indirectly in some manner and then test the various
alternatives under consideration o estimate how each affects the behavior, Data can then
be collected to determine which alternative is best. An example is to determine the drag
force on a proposed submarine. Because it is infeasible to build a prototype, W€ can build
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When any Monte Carlo simulation is pe

placing 10
the assump

rformed, random numbers are used. We disey;
) g

how to generaté random numbers in Section 5.2. Loosely speaking, a ““se

gene! L : ; ; g quence of randoy
pumbers uniformly distributed 1n an interval m to n’’ is a set of numbers with no appare !

pattern, where eaf:h nur.nber be'tween i and n can appear with equal likelihood. Forexzfm 1m
if you toss a six-sided die 100 times and write down the number showing on the dieeach(p >
you ‘wﬂl have written down a sequence of 100 random integers approximately unifOnm:ﬂ& ':
g;;r"sbs;idb‘;ver the :“([ler"l’_‘: | to 6. Now, suppose that random numbers consisting of Sli
generated. The tossing of a coin can be dupli i |

——— : plicated by genera

pumber and assigning it a head if the random number is even and ‘y'g —
is odd. If this trial is replicated a large number of ti en and a tail if the random e |
about 50% of the tim _ ! r of times, you would expect heads to octu ‘
! c. However, there is an element of i |
run of 100 trials could produce 51 heads and th eaf chance invel el [HEphtE
(;lllhough this s not very likely), Ths lhen l at the next 10 trials could produce all hea
than the estimate with 100 trials. Proc’csqefm.nmlc with 110 trials would actually be vo¥ |
sses with an element of chance involved are

probabilistic, a
» as opposed to d it
e "
terministic, processes. Monte Carlo simulation is therefoe

a probabilistic model,
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area un chavior may be ei ..
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tance: I |
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ough it may be impossible to find it
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: o Fi

ee gure |

. tl)thera deterministic or 3.1, we see that a deterministic model ca”b,e ?—

¢ used to approxim a probabilistic behavior, and li_keWiSea“MOn.; |
ate a deterministic behavior (as you will $¢¢ s

U
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5.1 Simulating Deterministic Behgyi
avior: Area Under a Curve
v 2 Behavior Model 'g
0 e 3
5'1 dthe l'n : s T::
¢ n . _sotiC Determlmstlc T
A inis S Determin s
g io” " rer™ babilistic ule .8
‘fp@hihe de! e Probabilistic g
o st
§ oximation
s a Monte carloeilfli;e real pow:s :)1? &rea under a curve) or a probabilistic one. H
4 would expect, 4 onte Carlo simulation lies in modeli ‘ OWEV.CF, 2.15
ehavim'- ng a probabilistic

rincipal advantage of Monte Carlo simulation is th :

. asbe used to approximate ver e relative ease with which it can
sometimes 0= ) Y complex probabilistic systems. Additionall
Carlo Simulatlor\. provides performance estimation over a wide ran é f 1 lOI’lE} o
han A very restricted range as often required by an analytic modelgF0 hcondmons e
5 articular subnone] can be changed rather easily in a Monte Ca'rlousritmzrlmt(')re, e
the arrival and delst_lnlatlon patterns of customers at the elevators), there is tt?elont(su'di ai’
conductinga sensitivity analysis. Still another advantage is that the’modeler has f(()) fmlla .
e level of detail in a simulation. For example, a very long time frame can be com nr:,gs:c;, or
a small time frame expanded, giving a great advantage over experimental mode]l; Finallor
there ar¢ Very powerful, high-level simulation languages (such as GPSS GASP, PI.lOLOGy,
SIMAN, SLAM, and DYNAMO) that eliminate much of the tedious lai)or in c,onstruaing,
a simulation model.

On the negative side, simulation models are typically expensive to develop and operate.
They may require many hours to construct and large amounts of computer time and memory
{o run. Another disadvantage is that the probabilistic nature of the simulation model limits
the conclusions that can be drawn from a particular run unless a sensitivity analysis is
conducted. Such an analysis often requires many more runs just to consider a small number
of combinations of conditions that can occur in the various submodels. This limitation
then forces the modeler to estimate which combination might occur for a particular set of

conditions.

Al Simulating Deterministic Behavior:
== Area Under a Curve

ve illustrate the use of Monte Carlo simulation to model a deterministic

In this section
behavior, the area under a curve. We begin by finding an approximate value to the area
f(x) is some given continuous

under a nonnegative curve. Speciﬁcally, suppose y =
function satisfying 0 < f(x) = M over the closed intervala < x < b.Here, the number M
is simply some constant that bounds the function. This situation is depicted in Figure 5.2.
Notice that the area we seek s wholly contained within the rectangular region of height M

and length b — a (the length of the interval over which [ is defined).

Now we select a point P(x, y) at random from within the rectangular region. We will
pand0 <y <M,

do so by generating two random numbers, x and ¥, satisfyinga < X = .
and interpreting them as a point P with coordinates x and ¥ Once P(x,y)1s §elected,-we
ask whether it lies within the region below the curve. That is, does the y _coordinate satisfy
0 <y < f(x)?If the answer 1S Y&, then count the point P by adding 1 to some counter.

R .
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188 Chapter 5  Simulation Modeling

Points are nal counted when they

@ Figure 5.2 o nid i
A i ubove the curve y=f(x)
The area under the ;
M- -‘;zf‘"-"'-—""“'-1

nonnegative curve y =f(x)
over a < x < b is contained

within the rectangle of
height M and base length |

b-a. |
b

|
|
|
|
|
|

.
' Points below the cyrye
AT qre counted

X

© Cengage Leamning

ount the total points generated and a gp,
on

Two counters will be necessary: one o
those points that lie below the curve (Figure 5.2). You can then calculate ap 5, Sy
value for the area under the curve by the following formula: Pprcxlma!e
area under curve pumber of points counted below curye
area of recluhgle ~ (otal number of random points
(he Monte Carlo technique is probabilistic apq Wi
Cally

) the Introduction,

nber of trials before (he deviation between the predicted and ¢,
iscussion of the number of trials needed to ensure a predelerminiva
] eslimate requi

As discussed i
requires a large nu!
becomes small. A d
of confidence in the fina

-acy of the result (i.e.,

rule. to double the accul
{imes as many experiments are necessary.
ives the sequence of calculations needed for a genery
al com.

The following algorithm 2
puter simulation of this Monte Carlo technique for finding the area under a curye

IUQS
res a background in statistics. However, 5 d leyg
2 95 2 genery)

(o cut the expected error in half), ah :
» 10Ul foy

Monte Carlo Area Algorithm
Input Total number n of random points to be generated in the simulation.
= f(x) over the given interyy

Output AREA = approximalte area
a <x < b, where 0 = flx) <M.

Initialize: COUNTER = 0.

Fori = 1,2....,n,do Steps 3-5.
x; and y; that satisly a < x;j = band0 < y; <M.

under the specified curve y

Step 1
Step 2
Step 3 Calculate random coordinates

Step 4 Calculate [ (x;) for the random x; coordinate.
Step5 Ify; = /f(x;), then increment the COUNTER by 1. Otherwise, leave COUNTER as is.

Step 6 Calculate AREA = M(b —a) COUNTER/n.
Step7  OUTPUT (AREA)
STOP
Table 5.1 gives the results of several different simulations (o obtain the ared benealh
/2 <x <m/2 where ) < cosx < Z
The actual area under the curve y = cos.x over the given interval is 7 square Wit
I}'olg that even with the relatively large number of points gencrated, the error is significant
For functions of one variable, the Monte Carlo technique is generally not compeitie ™!
quudm[ur"c?“lcclmiqucs that you will learn in numerical analysis. The Jack 0
and the difficulty in finding an upper bound M are disadvantages as well. Never

the curve y = cos x over the interval —

f an exror bou!
(heless,

"
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Table 5.1 o ;
ab Monte Carlo approximation to th ;
€ area under '

the curve y = COs X i
Mwwww@_g&ntewa\ ~/2% x'< 71/
ez L SE XS T2
Numper Approximation Number e T |
of points (o area of points Approximation
t
12 (())g 2.07345 2000 ke
B 1T o oy
400 2.12058 s ‘.9991612
500 2.04832 20 201429
600 2.09440 o0 202319
700 2.02857 e AllCeG
I e 10000 2.00873
jood 99491 15000 2.00978
1000 1.99666 20000 201093
1.96664 30000 201186
© Cengage Leaming :

nte Ca chni .
Monte Carlo te hnique can be extended to functions of several variables and becomes More ‘

i practical in that situation.

Volume Under a Surface

Let’s consider finding part of the volume of the sphere

x2+yr 2 <l

that lies in the first octant, x > 0,y > 0, z > 0 (Figure 5.3).
The methodology 10 approximate the volume is very gimilar to that of finding the area
under acurve. However, now we will use an approximation for the volume under the surface

by the following rule:
nted below gurface in 1st octant

volume under surface  number of points cou
B ~ total number of points

volume of box
i

]gorithm gives the sequence of calculations required to employ Monte Carlo ;

The following 2
1d the approximate

techniques 10 fir

yolume of the region.

Vglume of a sphere
X +.y2 + 2% < 1thatlies in
the first octant, x > 0, y > 0

>0
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190 Chapter © Simulation Modeling

Monte Cgrlo Vollm;:“t:‘fz:::;;l :1 of random points 1 be gcncrulcd in the simulation,
0

Oll:‘l[[))‘:lt VOLUME = npproximm,c'volli;ne enc

first octant, X > 0,y>0.2>%

Initialize: COUNTER = 0.

.. n, do Steps 3-5.

oordinates Xiy Yis

<besysd

for the random coordinate (X, i)

(the COUNTER by 1. Otherwise, leaye Coy
NTy

Josed by the specified function, 7 <

Step 1
Step 2 Fori = 1, 2:
Step 3 Calculate random ¢
(In general, d <X

Step 4 Calculate f (xi, yi)
Step 5 IfrandomZi < fxiny

z; that salisfy 0 <% = 1,0 <y, < 1,0
0<z M)

R

3,

1), then incremen

as is.
(b - ER/n.
Step6  Calculate VOLUME = M(d —¢)(b a)COUNTER/n
Step 7 OUTPUT (VOLUME)
STOP
Table 5.2 gives the results of several Monte Carlo runs 1o obtain the approximate olumey
0]
x2 A y2 + 22 S 1
that lies in the first octant, x > 0, y > 0,z>0.
4
Table 52 Monte Carlo approximation
to the volume in the first octant under
the surface x 2+ y 2 +22 <1
T =0 2 RS 3
Number of points Approximate volume
100 0.4700
200 - 0.5950
300 0.5030
500 05140
1,000 0.5180
2,000 0.5120
3,000 0.5180
10,000 0.5234
2000 0.5242
© Cengage Leaming

¢ unis

T . : .
he actual volume in the first octant is found to be approximately 0.5236 cubic " :
poir

(m/6). Generally, thou i
S a);,es. gh not uniformly, the error becomes smaller as the number of

234 ¥ -

s - - i ” P 0
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r . . nt 3 .
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eXperi.mem qu could be used to determine how many 1:
puytowin?d puas. any tickets you would
, expect to
mpanies, A and B, produce classical music record
cordin

ion

: | dco

2 I g TwO record ¢

nction, z = f g q fA s

‘ Gy ing. | Jabel, and 5% of A's new compact discs exhibi signi £s. Label As

¥ )in the o nanufactured under tighter quality control (an%lmcr:)iizl degrees ofw;upage‘?;:i%%
soonly 2% of its compact discs are warped. You p“m?:::gr}:er{“:clexpenswe) than

abel A and one label

our local s : i
tore on a regular basis. Describe an experi |
. : i
ent that could be ¥ i

r B,recording aly : ‘
e s Lo Sz, ; l;ile)’(:nlg tc\l:(;e\l;/rzll'gzd]zgmr;z:lydt;;z:sfg;o; g‘?}\?;r:ds;?em to make such a purchase before ;
i 3, Using Mont'e Carlo simulation, write an ?]gorithm to calculate an a "
therwise, Ieave COUNTEg by considering the number of random points selected inside the quar‘;g?‘::\‘:“on o
Q x4+ y?=1,x=0,y20

where the quarter circle is taken to be inside the square

S:OsxflandOSygl

Use the equation n/4 = area Q/area S.
arlo simulation to approximate

<x=3

the approximate volume of

4. Use Monte C {he area under the curve f(x) = JX, over
the interval 3

5, Find the area trapped between the tw — x?andy = 6—xand the x- and

o curves y

y-axes.
6. Using Monte Carlo simulation, write an algorithm t0 calculate that part of the volume
of an ellipsoid
2 2 2
ol 1
X oLi-F—% 16
2 T8
0,z>0.

octant, x > 0, ¥

write an al gorith e volume trapped be-

that lies in the first
m to calculate th

7. Using Monte Carlo simulation,
tween the two paraboloids

z _g-x2-) and Z =2+

on the elliptic cylinder

L Note that the two paraboloids intersect
42y

224

@ Generating Random Numbers
ln the previous section, We developed algon'thmsloén Y

. "ndvolumes. A key ingredient commO” tothese ' " uding gamo”
K ajnd"m, numbers have a variety of application®:
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192  Chapter 5 Simulation Modeling
arger complex systems such as large-scale — :
d |
IOPEra[i%

area or volume, and modeling I
or air traffic control situauons.
In some sense acomputer does not really generate random numbers, becauseqg
employ deterministic al gorithms. However, we can generate sequences of % mpubﬁ
b be considered random. There j o
Isno si“gle Ui
bey

numbers that, for all practical purposes. may
best test to ensure randomness.

random number generator or
There are complete COUrses of study for random numbers and simulationg "
in depth the methods and tests for pseudorandom number generators. Our purpq oy,
to introduce a few random qumber methods that can be utilized to generate Seque here
pumbers that are nearly random. - ences o
Many programming languages, such as Pascal and Basic, and other sofiy,,
Minitab, MATLAB, and EXCEL) have built-in random number generators f;f(teI;,E;

convenience.

(<

Middle-Square Method
The middle-square method was developed in 1946 by John Von Neuman, S, Ulm, 34
ratories to simulate neutron collisions as pan of e

N. Metropolis at Los Alamos Labo
Manhattan Project. Their middle-square method works as follows:

1. Start with a four-digit number Xo, called the seed.
2. Square it to obtain an eight-digit number (add a leading zero if necessary).

3, Take the middle four digits as the next random number.
a sequence that appears t0 be random over the
en be scaled to any interval a to b. For example,

Continuing in this manner, Wé obtain
digit numbers by 10,000. Let’s

integers from 0to 9999. These integers can th
if we wanted numbers from 0 to 1, we would divide the four-

illustrate the middle-square method.
Pick a seed, say xo = 2041, and square it (adding leading zero

middle four digits give the next random number, 1656. Generating 13 random num

this way yields

) Lo get 04165681.The
bers in

o 1 2 3 4 5 6 7 8 9 1011 12

x, | 2041 1656 7423 1009 0180 0324 1049 1004 80 64 40 16 2

e numbﬂ_of
6 digitsh®
bef

T

ke the midd!
= 653217(

We can use more than 4 digits if we wish, but we always ta
as the random?

digits cqzugl to the number of digits in the seed. For example, if Xo
square 426,692,449,089 has 12 digits. Thus, take iddle 6 digi
 pamely, 692449, i oy
. b 1 n
) The middle-square method is reasonable, but it has a major drawback in 19 wniince.
:10 egenerate to zero (where it will stay forever). With the seed 2041, the rando™ e
oes seem to be approaching zero. How many numbers can be generalcd until We ) |

i

~ at zero?
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Jinear congruence
, 193
i hod 4
» 1inear ongruence method was introd
Ly andom numbers used oty Ez:;ldby D.H. Lehme ;
on this me Iin 195
th 1,
od. One advanrg P9y

52 G
ener
E\l“g Ra“ﬂgm N
U‘T‘hf‘.n}

do
Of psﬁu A
ods is that seeds can be
othef : ; selected that
st this concept w_:th an example). Ho generate patte ne advanigoe |
1 m does not repeat itself on large ¢ wever, the length s that eveny, ¢ 1t has gyer
paﬁec oice " three integers: @ b angmputers for most? of the cycle i :;ﬂ‘\)’ cycle (we
eiluence py therule » and ¢. Given some mﬁfﬁ”‘mns. The me§f§ that the
? tial seed, sa Tequires
» SaY Xgq, We $
» WE generate a

~

Xn41 = (@ X %y + b) mod(c)

“Jpere € ﬁot:emr:::?t\dsdg;idhﬁel muldp}ier, and b is the iner
equa g sl : e remainder after dividin ement. The qualifier mod(c)
2 n y C.

Xn+l = (1 X Xn +7)mod(10)

- peans Xn+1 is the integer remainder upon dividing x
= _ remainde‘r (_‘_12_3_) : 2. g xn + 7 by 10. Thus, if x, = 115, then
e s pvestigating the linear congruence meth
: \ odolo :
7 hich is @ major problem that occurs with random numbe%sy ,(\lv ecazed i o o
repeats jtself, and, altho‘ugh undesirable, itis unavoidable. A\'sogne og;:: e:\m e
erators begin to cycle. Let’s illustrate cycling with an Sxam;ne\ Py
7, we find x; = (1x7+ 7) mod(10) or 14 mod(10), which

number gen
If we set our seed at Xo =
this same procedure, We obtain the sequence

is 4. Repeat'mg
7,4, 1,8,5,2,9,6,3,0,7,4,,_.

ere is cycling after 10 numbers.
andc—1 inclusivel
inders after dividing the integers by ¢). Cycling

Nevertheless, ¢ can

mber sequence.
such away asto obtain a full set of
qusec =2 for the large value

e between any imits a

and again. Note thatth
of integers between 0
the possible
sin the random nu
n be chosen in
Many computer

be chosen 10
¢ numbers pefore cycling begins O occur
of c. Again, W€ can scale {he random numbers 0 obtain a sequenc
' ed‘ ? s
% iiidgg‘dl;roblem that can 0CCUf with the linearl congruence method 'xs\a\c\(.of St\i::\;‘z::\
independence among the members in the listO random ndmbers. Any eotr\tteo';\go:: .
the nearest neighbors, the next-nearest neig'hbolrs, the thxrd-.neare.s(t) ::‘\gw r\d,x A
| are generally unacceptable: (Because We live in @ ree—\d\ ca\l . tions.) gl
neighbor correlations ¢an b particula y aging 1N } Sl(in g‘e) peeause 0 N
dom number sequences can never be ely st ;:15\11 "i \fe\e e will appe
generated by 4 mathematical fort gorith . ry / stical tests These
0ses) independen 15
gtatisti

(for practical purp

concerns are best addressed inac
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Monlé Carlo simulation forlthe b
{ a

¢ computer available, test your
b calculﬂ[_or ?hc number of occurrences of the
aring

ack orde
Submode]
various cap

[ Submoge). If you have 4
by TUnning 1y trials ang
Cellationg With the historica)

atd: algorithm you modified in Propje

gonsidefb‘g:kaéfgers, Do you think back orders
ider

cons!

t?
uld you do it?
- . how WO
” 50,

m 1. Further mo

dif)’ the algorithy (o .
should be pepa); - i
b

zed in Some fashion?

AT Y s = . oL X ,"]"—w %%—homr— : s
o

7 virements of UMAP module 340, “The
e the 1¢q Probability distributions are introdyceg
0. Wlldle' | patterns, interarrival times of gaps
om arrivi E loss rates. The Poisson distribytjo
anc fse;;flas are used. The module requires an
's fo

Poisson Random
to obtain practica
between arrivals,
n, the €Xponentia]
introductory proba
of the derivatjve a
e fora classroom

Process " by - 4
linformatign e
Waiting line 0 <
distribution,
bility course,
nd the integral
presentation,
torage cost of $0.001 per gallon per day and 5 delivery charge of $500 per
me a$

ct a computer code of the algorithm YOu constructed in Problem 4, and
ery. Cor.]S::ordef points and order quantity strategjes,
are vario

g Models

L ildups
b:::j Erlang'$

se summation notation, and basic concepts
ity tou
lt)’ to

(he abil us. Prepare a 10-min summary of the mody]

from calct

AssU
deliv
comp

" e S enhch loaded | g
ypiE S ith unloading facilities for ships. Only one ship can be unloade i
b Consider a small Is’ﬁli'isra\:rive for unloading of cargo at the harbor, and the time b.et\;vefen : 2
. i ing ti or j
at any one tme. cessive ships varies from 15 to 145 min. The unloading time require ;’
he arrival of suc !

ds on the type and amount of cargo and varjes from 45 10 90 min. We seek 9
i en S 0 . L . -

a shll;r‘:‘ig the following questions:

answ

: . .
the average and maximum times per ship in the harbor?
1. What are

. . % . ’ l
ting time for a ship is the time between its armval and the start
2, If the wat

of unloading,
and maximum waiting times per ship?
e average

what are th

. it i
entage of the time are the unloading facilities idle? |

3. What perc ;

4, Wha is the length of the longest queue?

i reasonable answers, we can simulate ll}e actlivil'y in the harbor USI'I\],E
e le calculator. We assume the artival times be.lween sug:cesg o
a computer or Progrqmmf‘b e (ér ship are uniformly distributed over their respective umg i
e it }””0“(““8 o [')val lime between ships can be any il.lleger between .15_ an s
b lnSlﬂﬂCC-‘ llhienallrlr:lu interval can appear with equal likelihood. Before giving a ; :
145, and any integer with
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Chapter 5 Simulation Modeling

h ship:
We have the following dat2 for eac
: pres Ship 2 Ship 3 Shipa -
p§
30 15 120
; 20
Time between successive ships 55 45 60 75 2%
Unloading time %
i lock commences at ¢t = ( m;
; . ues 20 min after the c ' _ min, ¢,
Because dSlmg) rlzz:)rrr;\’;sat the start. Ship 1 immediately begins to unload, e harbq,

facilities are 1d1©

€ unjggy:
' tr =20+ 30 = 50 iy
: ; .5 2 arrives on the sc.cne at! ‘ B :
takes 55 min; nf“;w:;ls:)ts sl::::t 1o unload until Ship 1 finishes unloading at 2()a e
o be’%‘ll?'ss'ri};gs tchat Ship 2 must wait 75 — 50 = 25 min before unlo
. ) l . . . v :
ZiiuI:tlil:m is depicted in the following timeline diagram

i ip 2 arrives )
ShfSc]s s Ship 1 finishes unl.oadmg:
a""* start unloading Ship 2

Ild]cP i

0 20 S50 75
Timeline 1 .
i i i ttime ! = 50 4+ 15 = 65
hip 2 starts to unload, Ship 3 arrives a : i, Beg
gz‘:nﬁziﬁz o? Ship 2 starts at f = 75 min and it take§ 45 min to unload, nloading ;l;sl;
3 cannot start until £ = 75 + 45 = 120 min, when Ship 2 is finished. Thus, Ship 3 g

wait 120 — 65 = 55 min. The situation is depicted in the next timeline diagram:
Ship 2 finishes unloading:

ading b eg_mSIS N

The

Clock time (min)

Ship3  start unloading Ship 3
arrives l
Y
Jdle, [ ! -y
0 20 50 6575 120 Clock time (min)
Timeline 2

Ship 4 does not arrive in the harbor until 1 = 65 + 120 = 185 min. Therefore, Ship
3 has already finished unloading at t = 120 + 60 = 180 min, and the harbor facilities a
idle for 185 — 180 = 5 min. Moreover, the unloading of Ship 4 commences immediately
upon its arrival, as depicted in the next diagram:

Ship 3 finishes unloading Ship 4 arrives
W

Jdle, &g 1
0 20 50 6575 120 180 185 Clock time (min)
Timeline 3
Finally, Ship 5 arrives at 1 = 185 - i : : ing &
’ = + 25 = 210 min, be shes unloading
[ = 185475 = n, before Ship 4 finish

260 min. Thus, Ship 5 must wai ‘ Abe
: . ; { wait 260 — 210 = 50 min before
to unload. The simulation is com

340 rm‘n. The final siwation is shown in the next diagram;

Ship$
~ Ship 4 finishes unloading  finishes
fle die - Ship 5 amives unloading
& ¢ o1 < 7 + l *
0% 06575 1 — : i
Timeline 4 180 185 210 %0 240

plete when Ship 5 finishes unloading att = 260+ 80= |

[
|
P
[ \
! 1
! 1
! 1
! i
! 1
! 1
! \
! A
! 1
|

e
g Unloading time

@ Figure 59 e
idle and unloading tir

oure 5.9, we sumi
ISI;u'l;lcarrivals. In. Table
hypotbetical sl:ups. E.(
is 130 min. This waiti
dissatisfaction with tt
25 min of total idle
approximately 93% «
Suppose the ow
they are providing a
whether improvems
evaluating the quali
harbor is 130 min by
are very sensitive t
spent waiting for
Some customers ar
the longest queue
statistics to assess
Tih!e 310 Summary of the harbo
T

g R,
Sh]p ZHEER Rt e

Random time

: . Arrival
tween ship arrivals time

\1 PERer
) 20 20
3 30 50
4 15 65
g 120 185
T 25 210
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& 22 g g 3
1 1l 1 ! b 1
1 L] T T H .
; | K | I | (roin)
| Ship 1 1 1 ] ' '
! - ' nooo | ;
C e SHE - i : i
, | R . I 1 l
- £ ' Ship 3 i ;
i I L ;
o " Ship 4 :
b4 H . ]
: } :. | i Ship 5§
i !
b 1

G:: Unloading
facilities

Idle/wait time

m Unloading time

@ Figure 5.9
|dle and unlo

€ Cengage Leaming

ading times for the ships and docking facilities

In Figure 5.9, we summarize the waiting and unloading times for each ot"thc ﬁYc hypothetical
ship arrivals. In Table 5.14, we summarize thc. results of the entire mlmu]auon of the ﬁvc | B
hypothetical ships. Note that the total waiting time spent by all five ships before unloading : | 1®
¢ 130 min. This waiting time represents a cost Lo the shipowners and is a source of customer
dissatisfaction with the docking facilities. On the other hand, the docking facility has only 3
25 min of total idle time. It is in use 315 out of the total 340 min in the simulation, or
approximate]y 93% of the time.

Suppose the owners of the docking facilities are concerned with the quality of service
they are providing and want various management alternatives to be evaluated to determine
whether improvement in service justifies the added cost. Several statistics can help in
evaluating the quality of the service. For example, the maximum time a ship spends in the
harbor is 130 min by Ship 5, whereas the average is 89 min (Table 5.14). Generally, customers
are very sensitive to the amount of time spent waiting. In this example, the maximum time
spent waiting for a facility is 55 min, whereas the average time spent waiting is 26 min.
Some customers are apt to take their business elsewhere if queues are 100 long. In this case,
the longest queue is two. The following Monte Carlo simulation algorithm computes such
statistics 1o assess various management alternatives.

-

A

.

Tble 514 Summary of the harbor system simulation

Pr——

S —— - . e 5 T
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216 Chapter 5 Simulation Modeling

Summary of Harbor System Algorithm Terms

between; Time between successive arrivals of Ships i and i — 1 (4 Tandom intege” ;

15 and 145 min) i WYing by,
arrive;  Time from start of clock at ¥ = 0 when Ship i arriveg at “_13 harbo for s K
unload; Time required to unload Ship i at the dock (a random Integer Varying b:[dlng
90 min), .o : g,
start; Time from start of clock at which Ship ¢ commf:nces its un]oading q
idle; Time for which dock facilities are idle immediately pefpye CommencEmem ot
— - Shipi "“‘Uading

wait; Time Ship / waits in the harbor after arrival beere' llmloading Commep,
fini:sh,- Time from start of clock at which service for Ship j is completeq z¢ the
harbor; Total time Ship i spends in the harbor
HARTIME Average time per ship in the harbor
MAXHAR Maximum time of a ship in the harbor
WAITIME Average waiting time per ship before unloading
MAXWAIT Maximum waiting time of a ship
IDLETIME Percentage of tota] simulation time unloading facilities are idle

Ceg

Bl
nloadmg facilixies

Harbor System Simulation Algorithm

Input Total number 5, of ships for the simulation.

Output HARTIME, MAXHAR, WAITIME, MAXWAIT, and IDLETIME,
Step1 - Random]y Senerate between; and unload,. Then set arrive; = betWeenl‘
Step2  Initialize all output vajyes:

Logd HARTIME = unload,, MAXHAR = unload,,
- WAITIME = ¢, MAXWAIT = 0, IDLETIME = arrive,
" Step3 . Calculate finish time for unloading of Ship, :
o5 Len - finish, = arrive, + unload,
“Stepd  Forj — 2,3,...,n,do Steps 5-16.
- -Step5  Generate the random pair of integers between; and unload; over thejr respective time

Step 6 “Assuming the (ime clock beging af ; = 0 min, calculate the time of arrival for Ship;:
. © - amrive; = arrive; _, 4 between,
Step 7 Calculate the time difference between the arrival of Ship; and the finish time for unloadin
the previous Ship, _:
timediff = arrive; — finish; _ I
Step 8 For nonnegatjve timediff, the unloading facilities are idle:
idle; = timediff and wait; =
For negatiye timediff, Ship; must waj, before it
: wait; = —timediff pg idle; =
Step 9 Calculate the start time for unloadj
start; = arTive; + waip.
Step 10 Calculate the finish time ¢

can unload:

Scanne! !y !am!canner
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If harbor; > MAXH ;

MAXHAR as is. AR, they set M

Sum Wait,- into total Wit AXHAR - S5

Sum idle; into total ltllng time = harbo =ulng M

If wait; > MAXW, idle time DL AITlME , X, g
1

Set HARTIME =AIP£17 then gg; E&ME, for gy,

IDLETIME/finish, . TIME/p, Warr

OUTPUT (HARTIME, ) ATy " Oty

STOP " MAXHAR, worm

Tagin,

. Tat?le 5.15 gives the resuly fIDLETIME)
simulation runs of 100 gh; S, accordip,
Nod Spbaa.a elPS each, 810 the
a
be the effect of hiring additigs
t]'llaf the unloading time interyqy € dock
gives the results based on our Sirrs1 reduced g, Bbetiereqy
u €]
- 3'(03 can .see from. Table 5.16 thq
. min c(;rease-s the time ships speng ﬁlft;ductio '
e percentage of the total time dyg ¢ harbor, especj 18 tim
ally the v

nsu
1 Itant for N
al labor op am Wiers o

lati()n algol_-nhm

If the traffic increases to the extent that th
between 10 and 120 mi . e tim
this table that the s(}),-m n, the simulated results are as shoyy
i B agam spend more time in th OWN in Table 537 We can
now harbor facilities are idle much less of the tim ¢ harbor with the increase
dock owners are benefiting from the increased buiixgreov
S.

€ between syce,
see from

d traffic, but
er, both the shipowners and the

Table 5.15 ‘ rHy'eir/bor system simulation results for 100 ships

3 oo e
S

Q\:xriariz ]:lnl:?nc;f (;ifshlp.ln .Lhe harbor 106 8BS 101 16 m- %

! a ship in the harbor 287 . 180 233 280 234 24
Average waiting time of a ship 39 20 3 0 4 7
Maximum waiting time of a ship 03 118 1M W 16 M
Percentage of time dock facilities are idle  0.18 017 015 02 04 0N

© Cengage Leamning i ‘
Time between suceessive ships is 15-145 min. Unloading time per ship

Note: All times are given in minutes.
varies from 45 to 90 min.

m simulation results for 100 ships JE—
B = S

I eon e
i

Table 5.16 Harbor syste

I I IR e 6
Average time of a ship in the harbor 176"{ s
Maximum time of a ship in the harbor i

¢ of a ship 02 58

Average waiting tim
Maximum waiting U
Percentage of time dock

meofa ship

facilities aré jdle

{® Cengage Leaming
Note: All times are given
varies from 35 to 75 min.

in minutes-
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satisfied with the assumption thay the

ships (i.e., their interarrival times) and the unloading time per ship gy, oy flc‘:al lime
over the time intervals 15 < between; = 145and 45 < unload; < 9, respacy W dig rit:ee“
to collect experimental data for the ha_rb.or system z.md 1ncor.porate the fesults\-,ely' Wed u?ed
as discussed for the demand submodel in tl?e previous section. We Obserye Intg our mec‘de
1200 ships using the harbor to unload their cargoes, and we colject e datgp i the[icgdel

; )| '
Table 5.18. o hm Usplayg,)
Following the procedures outlined in Section 5.4, we consecutiye| in

_y : ya
probabilities of each individual time interval between arrivals as wel] g prob:t()iilt-o Bethe,
1t

individual unloading time interval. These computations result in the cumy] g e

ativer. Ot
depicted in Figure 5.10. _ o tve hlstogrm;sh
Next we use random numbers uniformly distributed over the interyg] 0 :
to duplicate the various interarrivz'll times and' unloading times based o, the S x g l
histograms. We then use the midpoints of each 1nte{'val and construct linear Spline y
adjacent data points. (We ask you to complete this construction in Problen, l)sl gy

it is easy to calculate the inverse splines directly, we do so and Summarize |, : BCayg
§ p
Tables 5.19 and 5.20. Sullg j,

_Suppose now that we are not

Table 5.17 Harbor system simulation results for 100 ships

B A e R S A 6 AT

F e

Average time of a ship in the harbor

14 79 96 g8 -

Maximum time of a ship in the harbor 248 224 205 171 m o,
Average waiting time of a ship 57 24 41 35 1 23
Maximum waiting time of a ship 175 152 155 122 309 ”;
Percentage of time dock facilities are idle ~ 0.15 0.19 0.12 014 017
-

{© Cengage Leaming
Note: All times are given in minutes. Time between successive ships is 10-120 min. Unloading time per ship

varies from 35 to 75 min.

using the harbor facilities

T S ,
l o DS R R T Ll

Table 5.18 Data collected

v : ¥4

for 1200 ships

J oo g s e
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%h ﬁguf"_ histograms of 16

O S tive hi
Oy, 1 nqllla tween S P
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o
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T

o
o
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o
S
[

Cumulative probability of occurrence

v )

t . ‘ 2] V) p ) v !

Sln ‘ 2 5 5 . Time
a. Time between arrivals

125
135
145

1.0 |
1.000

909

N;
g 0.8 -
766

m

0.6
o

04 373

ime per Shlp
243

Cumulative probability of occurrence

02 F 157

PM““,“, 062
robabily Lo17 5 Time

o v 9 v 9
of w @ 4 8 8 R B & =8

DECUITEIEE b. Unloading time

B

© Cengage Learning

I Finally, we incorporate our Jinear spline submodels into the:1 s';mulation. mg?;sfc;r ;t:(:l
o : i _ and unload; fori = 1,2,....n 10
0.043 harbor system by generating between: an et s i

; ' d in
00% | 5 of our algorithm, according to the rules display® <ndent simulation runs of

0.086 | ing these submodels, Table 5.21 gives the results of siX mdep e
Oigg 100 ships each.

o |
o8 | EKAMPLEZ Morn

0‘091’ ; 7 R
i

ing Rush Hour
o s e gepmf SR

iR
RS o

In the previous example,
P unloading ships. SU¢
/ : consider a system W1
‘ . problem and present th
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unloading time ©

the interval [0, 1]-
o B PR SS
Random number

Corresponding
unloading time

AT
o A RO B

Inverse linear spline

interval
0<x<0017 45<u<41s = 147% + 45.000
0017 <x <0062 415Zu< 52.5 w = 111x +45.611
0,062 < x <0.157 525 <u <515 u = 53x +49.237
0.157 <x <0243 575 <u < 62.5 u = 58x + 48.372
03 < <033 GRS Su<ELS 4 = 38.46x + 53.154
675 <u <725 w = 27x + 57.419

0.373 < x < 0.558
0.558 < x < 0.766
0.766 < x < 0.909
0.909 < x < 1.000

725 <u <715
775 <u <825
82.5<u<90

u = 24x + 59.087
u = 35x + 50.717
u=82.41x + 7582

© Cengage Leaming

Harbor system simutatios
s ol ;

a ship in the harbos

- 3 i %
220  Chapter§ Simulation Modeling |
{
rovide for the time § ~ aime of
) ubmo : : crage UM o
h Table 519 Linea’ segment 3@ chips 8s @ function of @ i v mum 4me of a ship “‘.“,“- harbor
coss! a ;
i . between arrivals of Shuc'nterval 10,1 i Lerage waiting time of a ship
inthel i . Aiting time of a shi
endor i ; i M“’“mum w;l:\::i :.io:k fuziiiii‘:s are id|
Random number Corresp]m'l:i:g Inverse linear spline ercentae oL e
L arrival U
interval o ) = 555.6x + 15.0000
0<x < 0.009 152 0 b= 344 .8x + 16.8966
2 = 20<bh<3 b = 285.7x + 19,1429 ives i
0.009 £ < 01)73 02b<40 T Rt When a person arrives in the lobby
0038 <x < 34‘1324 w02b<0 g o b . e ransporting their load of passer
g.(l)g 2% ol v 02 o 38 b — 62.1x + 46.7080 %€ " Phe management of the buildir
28257 60<b< st I ated in exact
0214 < x <0373 S0k b= 80 p = 50.0x + 51.2500 and is ‘n\c]"(:bled in exac ly what's
0.375 < x <057 i 2 00 b = 58.1x + 46.5698 have to wait 100 long in the lobby b
0575 < x <0747 =0 0 b=800xH 30.2400 ch time riding the elevator
5= % w<b< , {00 mu _ Vior
Gk h ggi; o<b<lio b= 14718.2,\ = 212;:‘ 1]3 239 1 the lobby during the morning r
8'3473 S Zoss0 llos b <120 Z = 288',)\(. — 456.4706 resolve these complaints by amo
050 < x < 0.99 120 < b < 130 i D — AR We wish to simulate the ele
0.980 <X it I Ll 4855 Pk ,
0.997 < x < 1.000 s ation that will give answers to t
© Cengage Learning | "
i customers ar
Table 520 Linear segment submodels provud(;a fr(;ir:i:ﬁnber' 1. .HOW many ‘ TS are ac
f a ship as a function of arando L 2. 1f the waiting fime of a pers
arrival at the lobby until e

maximum times a person v

3. What is the length of the
management with informse

4. 1f the delivery time is the
in the lobby, including ar
and maximum delivery t

5. What are the average an
6. How many stops are ma
hour time is each eleval

An algorithm is prese

v Cons'ider an office building with 12 floors in a metropolitan area of some
the morning rush hour, from 7:50 to 9:10 a.m., workers enter the lobby of
and take an ?Jevator (o their floor, There are four elevators servicing the
(l))_e;\geen arrivals of the .customers at the building varies in a probabilistic m
o i;/;’ and upon arrival each customer selects the first available elevalor Cii
, waits. i sin' :, pferson enlters. an elevator and selects the floor of destination, | ’
e Waitingcc :] ore closing its doors. If another person arrives within the 15-5¢ 'mm?o}i
eisre : g - y i
5 peated. If no person arrives within the 15-sec interveh the ¢ “i
ki “\
!
B L
|

{he buildng

anner & §
(numbei
{he elevad

7 v
.the way. After delivering i

e zjengers Onli;eﬂﬂg its last passenger, the elevator returns to the maif floo% P
0T _ e way down. The maximum occupancy of an elevator is 12005
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55.6x + 15.0000
4.8 + 16.8966
5.7x + 191429
0.1x + 25.6863
Llx + 36.2222
1x + 46.7080
Ox + 51.23500

lx + 36.369%
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Sy —22 8169
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2% — 4536.4706
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5.5 Queuing Modals

Table 5.21 Harbor system simulajgp, results for 19
Ships

Avernge ime of a ship in the harbor

i [ a ship i 108
Maximum tme m. a Shl[:\ in ll.n: harbor 21 lgg 125 - =
Average waiting time of a ship RH 25 218 133 250 101
g\mximum eiting e of n‘s‘h_i P 156 |~18 A 9 53 19
Percentage of time dock facilities are idle 009 L (;37 o ‘Eﬂ li: |
T Congage Leamng %o :

Nore: Based on the data exhibited in Table 5,18, All imes ppe given in mingles,
When a person arri\l*es in the lobby and no eley
are transporting their load of pflss.engers), 3 queue begins to fo

The management of the building Wants to provide good eley,
and is interested in e:\aclly what service it is NOW giving, Som
have to wait too long in the lobby before an eleyaor returns. Oth
too much time riding the elcxl'mor. and still others say that ther
in the lobby during the moming rush hour, Whay is the real sit
resolve these complaints by a more effective means of schedu

We wish to simulate the elevator system using an
tation that will give answers to the following questions

ator is available

(because g four e}
I in the lobby.

Cvatorg

ator service to jis Customers
© customers claim tha they
ex:s complain that they spend
€ 18 considerable congestion
uation? Can the management
ling or utilizing the elevators?
algorithm for computer implemen-
1. How many customers are actually being serviced in a typical morning rush hour?

2. If the waiting time of a person is the time the person stands in a queue—the time from

l arrival at the lobby until entry into an available elevator—what are the average and
maximum Umes a person waits in a queue? | |

3, What is the length of the longest queue? (Th'c answer 10 this question will provide the

management with information about congestion in the lobby.? o

If the delivery time is the time it mkg:-s a gtnslumer o rc:\.ct‘\ hls‘klr h\:\;ﬂl\l‘u«\brrk ih:ratqnl;c

in the lobby, including any waiting time for an available elevator, { g

A

T
and maxpmun delivery times;

o1 actually spends in the elevator?
e and maximum times a customer actually spends in the ele
S ..1.{'.\(

e

What are the aver

O Ny ¥ A c D l eleN ) § W T tage !ll | \“\\‘ “\L«“l‘\l’\ﬂ r\l.\l\
1 eI H’L t Y cach l alor! Yh‘«“ ‘ eentage ¢ e\
. ‘i‘. LAl Fh,P\ Wi A

v ot
ating 5@
hour time s each clevator actually inu

An algorithm is presented in Appendix B.

s of Figure .10, construct

submodels (a8 10
ber interval.

, ive histogran
y e cumulanye histog o e
& o ¢ Table 5 1% and the cu J gnloading um
1. Using the data from Table e Amivals and onloading o
s of the time betwee plings overeachrd

a 0 [3% s 4 %

; i C & A
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Figure & 71 Caloulate equas . iver
Compare vour resolly with the iveE

SHESE G

¢ chins wailing
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' . ymber 054 o]
bmes, Compare results 1o U keep track of the b e
: o algorithm 10 R0
L Modify the ship harbor systefil 515 ‘ :
A Modity the shig
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