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A1) The non existence of the electrons in the nucleus, - The
radius of the nucleus of any atom is of the order of 10~ m, so
that if an electron is confined with nucleus, the uncertainty in its
positior. must not be greater than 10~ m.

According to uncertainty principle
. 4gq 4p=h, ..(1)
where 4q is the uncertainty in the position and 4p is the uncer-
tainty in the momentum and h=h/2x.

Equation (1) gives

%
LLOSSx 10 . ok _6625x 1073
axio-14 | =or  2x314

=1'055X% 10—3 joule —sec.
and 4g=2r=2x10-4 m.]

~23-275 % 10-2 kg. m./sec.

It this is the uncertainty in momentum of the electron, the
momentum of the electron must be at least comparable with its
magnitude, i.e., - N
pRs5:275x 1021 kg, m.[sec.

The kinetic energy of the electron of mass m is given by
‘ 2

w ..
Je= 2m

(5:275 X 10-12)'2
M Ixox 10
(5275 x 10—21)2.
SR OX 10X 16X 10-°
A~9Tx 107 eV,
~97 MeV. p
i 'f the electrons exist inside the nucleus, their
kinet'fcl::l fnlg'ege;nglill'lsat‘-tble of the order of 97 MeV. But eXperin’lental
observations show that no electron in the atom possess energy

joule (since m=9x 1073 kg.)

eV.
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greater than 4 MeV. Clearly the inference is that the electrons do

not exist jn the nucleus.
Mhe radius of the Bohr’s First Orbit. If 4¢ and'4p are
thé\Gncertainties in the position and momentum of the electron

in first orbit, then we have
.~ dqdp=n

|
or Apnsa—q

The uncertainty in the kinetic energy of the electron may be

written as
AT= }m (4v)? ...(2)
(mdv)?

~ 1 [(h)
~ 2 (22)
h2
& 3m (dg) ...(3)
The uncertainty in the potential energy of the same electron is
AP 25 5
4q °
so that the uncertainty in the total energy is
AE=A4T+-4V
_ W Ze
2m (4q9)* dq° sl )
The uncertainty in the energy will be minimum if
d(4E) d* (4E
3(7@—):0 and d—————(gq)g =(+4) ve.
Equation (5) yields P

dAE)_ _n | Ze
dd)  m(dg)y " (dg)2- ...(6)
If E is minimum, we must have
h2 Ze2
|
= Tm@yr Td:
or ; -_._._.._....hz =ZEE. .
m(4q)® Adq*
or 4 ' h?
; q""‘ m Zea

S : ; e
S Dlrﬂ'rerentlatmg,cquation (6), we get )

'ﬁz(AE)~' n 32 5 Ze?
ddg) = " m (dg)*  “ (dg)®
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3N 2Z¢e%

RS — s —7—g using (7)
~ 3Ze¢ 2Ze = Ze* bS5
(Aq® (4g)* ~(4qy’
=(+)ve.

i.e., equation (7) represents the condition of minimum in the first
orbit. Therefore the radius of the first orbit is given by

2 h2 ,
mZe® 4m*mZe’ e (1)
which is just the radius of Bohr’s is first orbit.,

T=Aq=
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2.5. THE EHRENFEST THEOREM

Ehrenfest’s theorem states that in quantum mechanics the expectatio,
average values of observables behave in the same manner as the obseryg, ,?
themselves do in classical mechanics. This theorem furnishes an examp], Osf
the correspondence principle. |
Consider for simplicity a onc-dimensional case where the dynamic,

system is confined to the x-axis only. The velocity is the rate of change (; |

~the expectation value of the position coordinate x with respect to time

Therefore, |
d<x> d% ,
dt - dt—foow (x! t) xl/) (x’ t) dx
= fzp*x%ttedx+fag; Xy dx (224

~ The value of %‘f is obtained from the one-dimensional form of Eg

(2.15). The quantity 631; is also obtained from tlhe Schrodinger wave

equation as follows:
The wave function can be written as the sum of its real and imaginary

parts; .
v, )= ult)+ iv(xt) -.(2.29)

Substituting this in Eq. (2.15) and equating the real and the imaginary
parts we get

2
W __h
;3 = Vu + Vu ..(2.26)
' ou 71‘2 a
i, — — 2 . 2-27
and ;3 = ; V4 + W _ ..(2.2])

Multiplying Eq. (2.27) by -i and adding to Eq. (2.26) we get a wa
equation for y*(=u—iv): .
2

i W Figne s 2.2
S ?mVZ:p +Vy i

In one-dimension we have
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oy _ Py

U Tl (2.284)
Putting the values of 1’0 and ‘/’ in Eq. (2.24) we get
2 ) 2

d Lii a?-w o2yt
S x)=— — L+ Wypldc—) |— 52 +1p*
df [f Vra ( 2m gx2 w] —foo{ 2m gy L }xq)dx}

. h_ 00 *

L. A Y o ax .(2.29)

- 2m e 6x2 axz
Integrating by parts, the integral on the right -hand side of Eq. (2.29)
reduces to

o0

] - 7 [ w2 - 300
fet-

Since both ¥ and %v); vanish asx = o orx - — o, the above integral

reduces to :

? [aw . aw}
‘ o0 * ) 00 oo *a B
Again, [ D yax = [vy] ~Jv % e = f;” & dx‘

¢ i Thcrefore we obtain from Eq. (2. 29)

* 3’/’ — - *61/1 o S’i_).
m[ -2 fw P dx] - Y. o = ..(2.30)

m _ e

- is, the velocity is equal to the expectation value of the momentum
_ded by the mass. This corresponds to the classical equatlon dx i
=p,/m.

. Inasimilar waywe can calculate the
the momentum as follows:

time rate of change ofx component

i i“’ 8

3;(.0,5)- T fmv» (x, t) Y (x,0)dx

& = 8 Bl MQA

= —if fwz/) = ot jw e axdx] .(2.31)

'-_Putting the values of %1{1 and —Q-g-:— we get
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d L
'z _fm[axz ox 4 613de

+ [ [Vw*% - ¢"‘% (VVJ)] dx

I NV
-]
~f vy
_ __}; w*% dr = (- %}C{ Y= (F.,), (232)

g : .| dpy i
which is Newton’s second law of motion (—E— = x] . Thus we find that

the class.ical mechanics agrees with the quantum mechanics 80 far as the
expectation values are concerned. However, the méasured values of the
observables fluctuate over their expectation values. This is the character-

istic feature of the quantum theory.
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