chapter E

Flectrostatic Energy and Capacitors

4.1 -Intro duction

much simplified by means of energy

The solution of many mechanical problems gets very
also found

consideration. The study of the mechanical behaviour of an electrical system is
to be simplified by the use of energy consideration. In this chapter we shall calculate
the energy associated with various electrostatic charge distributions. For an electrostatic’
system no kinetic energy is im holly potential
in nature. The work necessary to assemble a system of charges ag
he system as a potential energy. This is known as elecirostatic energy- Here
ught to their positions at rest from their initial
From a knowledge of this electrostatic energy

acting on the system.

parted to the charges and the energy is W
oainst coulomb forces is

stored in t
it is assumed that the charges are bro
positions at rest at infinite distance apart.
it is possible to calculate the forces and torques

4.2 Electrostatic Energy of an Assembly of Point Charges
Let us calculate the electrostatic energy of an assembly of point charges. We can do this
by calculating the work done in assembling the system by bringing the charges in one by

lace the first charge g; at the position

one from positions at infinite distance apart. Top
m we require no work (u1 = 0) because there is no interacting coulomb field. Next to

bring the charge g to the position 72 We require work to be done against the Coulomb

epulsion due to g;. This work equals

I ™12 g1¢2 1 q1@ _
- — " dr = ’ ZOR
W= T Joo T dmeg 12 (42-1)

Where T19 = |7y — 72 | is the distance of g2 from qi-
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Next to bring the charge g3 to the position 73 work is to be done against the fig]q o
both ¢; and go. So the work required is -

I qugs 1 qag3
= u13 + u23.
4deg i3 ¥ dmeq To3 19 2 (4'2‘2,)

Thus, total electrostatic energy of a system of three charges is u1s + w13 + uay, which
is equal to the sum of potential energies of various pairs.

Proceeding in this way to bring the charges one after another we find that the toty)
work involved in assembling N point charges is

1 qigy
U=wuz+u+ug+ = . =, 42-
uyz + U3 + u23 + Z 7 — (4.2-3)
all pairs
where g; and g; are a pair of charges separated by a distance r;.
For N point charges the expression for U can also be written as
1 X 1 qiq;
U== L4 O 494
2 Z Z 4’/1'6() Tij i ( )
1=1 j=1

Ji

where the factor % is inciuded to avoid double counting of each pair. Note that the terms
with 7 = 1 are excluded because it represents self-terms.

The electrostatic energy U can also be written in terms of the electrostatic potential
Thus,
T
Wi ‘408
i v § Lt Tibis . ) VLZ' ‘))
{ii i1
LA .
; where
| :” 1
§ (/)i —, N _A;._._ ..(l".".. (4-2'6)
1 1 b}
! =1 47T6() T4
. i

is the potential at the location of the ith charge due to all other charges excepting @

4.3 Electrostatic Energy of a
Continuous Charge Distribution

. : ; ; e b ; Jum®
For a region of space having a continuous charge distribution characterised by & VO

; e . : : n
density p () over a volume V the expression (4.2-5) for U can be written in the for!

1 (4,3—1)

U=§]vp(ﬂ¢(fr“) av.

i
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Dor & general pe of chavge distribution characterised by a volume density p (7) over

e Vsurface density o (1) over a surface S, line density A (7) over a length { and

) A 3 [ == Y © 4 3
oints ChaTses e L2000 ) total electrostatic energy of the system will be given by

-
. {

| i . 1 7 1
e ol Ry A aair) 17 o = ,“v“]‘ . .,; ~ 1 -1 z : . -
U=a ' s U) V4 2 /S(T\T, ¢ (‘l‘ as § /I/\ (’—')(ﬁ("-') dl § — qi¢1- (43 2)
=

o JY -

14 Electrostatic Energy in Terms of Field Distribution

[o SOME_CANCS it becomes hmportant to express electrostatic energy in terms of field
vectors E and D of the system. Suppose we have a finite region of space V in a dielectric
sedium of permittivity e, charvacterised by a volume density p of free charges. The
Jectrostatic energy for this system is given by

_1f :
U= el p(F) ¢ () dV. (4.4-1)
v _
Now using the differential form of Gauss's law, V- D = p, we can write
U=1 / (¥-5)sav. (4.4-2)
1%

Using the vector identity
\vi (¢D) = qﬁ-D-l—¢(V-D>

we get

U=} ,/ v @ﬁ\ dv -3 / V¢-Ddv. (4.4-3)
JV 4
By using divergence theorem and the relation E = —-V¢ we get
[7:{;{(&5)'d§+%/‘lﬁ-5dw - (4.4-4)
VO )

where S is the surface enclosing the volume V. Let us now allow the region of integration

V to expand to infinity. This is permissible since from Eq. (4.4-1) we find that the

Qntribution to the integral will be zeroqwherever p = 0. Now at large distances from the

tharge distribution ¢ falls off as 1 iy D as 1/r* while the surface area S grows like 72.

30, roughly speaking, the surface integral in Eq. (4.4-4) goes down like 1/r. Thus, as the
| ;‘:rilce S is expanded to inciude all of space the surface integral vanishes and we are left
? t

-—

E-DdV. . _ (4.4-5)

B9

i —

all space
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. E ~lan SIrgy as St
This equation suggests that we may consider the electrostatic energy as stored iy, the

electric field with an energy density (i.e., energy per unit volume) .

oy

&

D=

7l (4 A4-6)

1
1

- . 1 12 T |
. B o o = o can e u = 56¢8% For charen. |
In case of linear isotropic dielectrics D = el and we can writ 5 har ges

in vacuum, u = ZeoE2.

4.5 Where is the Electrostatic Energy Stered?

Equations (4.4-1) and (4.4-5) show that the electrostatic energy can be CXI)I'Cf?‘SO(‘I ei-
ther as an integral over charge distribution or as an integral over the' electrostatic field,
Thus, one can assume that the electrostatic energy is stored either in thc charge or iy
the field. -Both the ideas lead to the same total clectrostatic energy. From the stang
point of electrostatics alone it is not possible to tell where the encrgy is actually stored,
However, in non-static case (e.g., in radiation theory) it is found to be more useful to
consider that the energy is stored in the field. When a charged particle oscillates it emits
electromagnetic wave. The wave travels from one point to another and carries energy
with it but there is no charge in the wave. Thus, it sccms reasonable to locate cnergy
within the field and not at the charges, which produce the ficld.

4.6 Self-Energy of a Point Charge

Let us examine whether the energy expressions (4.2-5) and (4.4-5) are equivalent or not.

According to Eq. (4.4-5) U is always positive (since £ - D = ef? ig always positive)
whereas according to Eq. (4.2-5) U can take up positive as well as negative \l/alues. This -
means that there is some intriguing difference between the two equations. In Eq. (4-2'5)
we do not include the work required to fabricate the point charges. Here we start with
ready -made point charges and take into account only the work done in bringing them
ko the1{ desired positions. Equation (4.4-5), on the other hand gives the total energy
s'}c]ored in a ch'a,rge. dis-tribution including the energy required t>0 I'ab.rica,tvo finite point
:h:rffljr_ZZ;T Tlnﬁfné';esuﬁal part.s. .Ene'rgy given by the Eq. (4.4-5) is sometimes called
charge‘q placge;/doin v;czu?;gsyd:;;l})’?rf;og ek 15 calculate the self-energy U of 2 point

q. (4.4-5). Thus,

: i 9 : 00 2
U= 3¢ / Bidy = %60/ (% - %) Amridy = — ¢’ L oo
all space r=0 e v ey | 7 0 :

Obviously the result comes out to b
out of the difficulty is to consider fi
of the classicql ra

¢ infinite, which ig physically absurd. One W®

nite radius of poj - iled
. lnt v o ) N o . 1(
dius of an electron, Point charges. This leads to the
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Discussions

e have derived Eq. (4.4-5) by using

Jo these equati:ns describe tyo diffe iy
que t0 all other charges excepting g
of charge i Eq. (4.3~1) ¢ (7)
" continuous distribution' the

rent (if;;zt) Th?en naturally the question arises w'hy
. B \,Nh tons?. In Eq. (4.2-5) ¢; is the poten’?lal
represents t} en we go OYer to continuous distribution

8 the total potential at the point 7 because for

char i .
small. ge right at the point can be taken to be vanishingly

17 Electrostatic Self—Energy of a
Uniformly Charged Sphere

Method I (Direct-method)

Suppose the sphere is built up by assembling a succession of thin spherical shells of
infinitesimal thickness. Let at any stage the radius is 7. Now to increase the radius from
r to 7+ dr we require to bring an amount of charge dg = p-47r2dr from infinity, where p
is the density of charge. When the radius of the sphere is 7, its charge will be ¢ = 4773
and the potential at its surface will be q/4megr. To add the dg amount of charge the

work necessary will be

. 4.3 ‘ 2

q TP dmp
dU = —— x dg=3 X p - drridr = cridr.
Amegr & Ameqr pramrar 3€p Py

/ 'Therefore, total work required to build up the sphere up to a radius a is

— —— 0 —

2 ra 4 2 5 1 3 2 .
U= il / rdr = g, e B _9_., (4.7-1)
0
Where Q) = %7m3p ‘s the total charge on the sphere.

Method II [using Eq. (4-4‘5)]

; 1 2
. / E2dV + 5o / o

i inside outside
Now
4rrd it -T
1 Qr,__,Lﬂ_ﬁ_—_——-——-Qs for r < a.
B ot me 10 AT O
| T3 __1___ Q—forr>a
B e T
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2 00 2
_ € [*( Qr 2 €0 ( Q ) - Ar2dy
2= 5 /(; <47760a3> 47T dr o= 9 ; 47&'607"2

Method III [using Eq. (4.3-1)]

From Eq. (1.8-11) the potential inside a uniformly charged sphere of radius a is givep by

where () is the total charge.

a 2 '
U = %/pqﬁ(r)dvz 87?6/0)(1/0 (g— ;—az) - 4mrr2dr
Qp [3 3 r5 ] Q Q 2a3 -
Y {53_ 10a2]0= 2600 ama’ 5
1 3Q?
dmeg  Ba

Now

Classical radius of an electron

Suppose we consider the electron as a uniformly charged sphere of radius rg containing
a total charge —e. The energy required to assemble this sphere of charge is

1 3e?
"~ dmey 5rg’

Experiments on the phenomenon of pair production show that it takes about 0.5
MeV energy to create an electron. This is equal to the rest mass energy, mc?, of the

electron. Let us assume that the electron radius can be estimated by equating its elec-
trostatic self-energy to the rest mass energy, i.e.,

550 2
il 3e _ 2 ] 362

r— =mc° or 7rg=
dmeg By

o0 4.7-2)
20megme? (

Substituting the values of different quantities we get 7o &~ 1.7 x 10715 m. The actud
radius of the electron is found to be much smaller then ro. This indicates that the acti
structure of the electron is not so simple as described above. It is rather complicated-
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4.8 Electrostatic Energy of
Conductor
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o a System of Charged

S; Loeflicient of Potential and Capacitance
Lot us consider a system of N conductorsg where all charges reside on the surface of the
conductors: In terms surface density of charge o and the potential ¢ total electrostatic
onerey of the system can be calculated ag

= %/50(7—")¢(1") dS. (4.8-1)

Since each conductor surface is an equipotential surface the above integration can be
written as :

N i Nv )
1 1
U=3) ¢ =5 ¢:Q 4.8-2)
329 jgsiads 3 2 i (

where Q; is the charge on the ith conductor and ¢; is its potential’ It is found that a

linear relationship exists between the potentials and charges on the various conductors
in the system. In fact for a system of N conductors we can write

N
¢ = Zpiij (4.8-3)
i=1 | .
v .
and Qi = Y cijdj | (4.8-4)
j=1

where p;; are called the cocﬁ‘icients of potential, c;; are the coeflicients of capacitance and
aj(i # 7) are the coeflicients of inductance. pi; and c;; depend only on the geometry.

The electrostatic energy of N conductors can now be written in terms of p;; or ¢;j :

U= 53 P (4.8-5)
i=1 j=1
1 N N ' .

U = 5 Zcz'jd)id)j- (4.8-6)
i=1 j=1

' - s Y.
Some of the important properties of pij and cij are the following:

pi; = pjir Pii > 0 and pii 2 Pij
1 7

: gl
; nd ¢; <0 foriF ]
i =cipy >0 8

49 TPorces and Torques from Electrostatic Energy

e ssible to calcxilate the forces and
ic energy it 18 Poss!

Itfm 2 knowledge of the electrcgizgzse we have an isolated system of charges whose
v ques acting on the system:
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: o nfiguration. Now we a
electrostatic energy depends on the particular char?‘e C(z1 erg"(;he flasnon oty 1110W "
part of the system to undergo a small displacement dr under ¢ e

ety
forces F acting upon it. The work done by F on the system under these circumstgmcrel\;‘;‘:
dW = F - dr. (4.9:1)
As the system is isolated the {nror_k iz done at the expense of the elec.:trostatié Cherg,
- U. Thus, W = _dll = —VU - df. (4_99)
© Therefore, | . =

F=-VU (4.9.3)

or in components form, , ,
Fr= _g_g o = _%%] 3 and F, =~ %%EO (494

where a subscript Q has been added to emphasize that
total charge remains constant during the displacement.

If the part of the system under considera

the system is isolated and it

tion is constrained to rotate about

and it undergoes a small rotation df under the action of a torque 7 then, " 'aXIS
dW =7.df = —qU = ~VoU - df,
where V, represents derivatives with respect to 6, 6, and 6, . Therefore,
7= —vng (4.9+)
and in components form,
ou
Tz = o0, " Ty = —g\z i and 7, = -ggjz Y (4.96)

aintained constant. Al
all conductors are kept

: s of conductors and the potent;
constant during displacement by potentials of

SOme external sources of
« energy
1 OW 8 part of such a system to undergo a smal} displacement d5 t}e work done by t
e ectr19al forces F acting on it wi] bedW = F. 4= ‘
done by the battery to m

aintain a] ; ¢
conservation of energy, he con ant potential. So for th

Work done on the system

I

(Increase ip Potential energy

+(work done by the system).
dU + qdw.

of the system)
dWpg

Il
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f the change in charge of the Jth conductor is dQ@; then
iWp = " ¢;dQ;. | (487)

The electrostatic energy U of the system of charged conductors is given by
=1 .9-8
U=1>"¢;Q;. (556
J

So at constant potential
—1
dU = 3 > ¢;dQ;.
7 :

' Therefoi‘e, dWg = ZdU, lLe., energy supplied by !the battery to maintain the potential
constant is equal to double the increase in the electrical energy of the system.
Using this result we get from Eq. (4.9-7),
dW =dU|, or F.dr=VU-df,.

Thus, F=vU l b In component forms,

R=%Y 5% a4 5- %9:- . (4.9-9)
In a similar way we can show that
oU auU | - oU :

An example of the above energy method

Suppose we are to find the force on the plates of a parallél plate or capacitor. If Q be
the charge on the positive plate, V' be the potential difference between the two pl

ad C be the capacitance then electrostatic energy stored in the capacitor is give
(See, Section 4.13) ' |

ates
n by

o
U = 5C ! (4.9-11)
or U = 3CV% (4.9-12)

Where the capacitance C is given by

= €0A
C.=-3=
T
1 . ' . '
01; Which 4 is the area of each plate, = is the plate separation and €0 1S the Permittivity
| the space (assumed to be air) between the plates, )
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Now i the charge @ is maintained constant then foree on the plate will be

\ « p ;\
v R (‘3(‘ O A 2 Oa \ epel 2¢p

R lo

If the potential Vs kept constant then the force on the plate will be

Re=Y -2 (1o 1,20C _ 112 0 'Sl‘:‘.‘.j TRLL I |

(‘.)-1‘ l\ 7 (Ti; -~

—

4.1 Capacitors

A capacitor is a system of conductors and diclectric, which can storve electrie charg,
Usually it consists of a pair of conductors containing equal and opposite charges (+Q)
with a potential difference (V) between them, which is independent of the presence of
other conductors.

Let us consider a capacitor formed by two such conductors 1 and 2 carrying charges
Q1 = +Q and Qo = —Q, vespectively. Total charge of the system is zero but by
convention the charge on the positive conductor is called the ehamge on the capacitor,
Now the potentials of the conductors in terms of the coetlicients p;; of potential can be

written as

¢1o= Qi+ peQr =Q (P — rw2)
d2 = paQi+ppQr=Q (pn — pa).

Therefore, potential difference
V=g = oo =Q (P — pr2 — v + paa)

Thus, the potential difference between the conductors is proportional to the charge on
the capacitor. The above relation is conventionally written as

Q =0V,

where C = (p11 = pra — par + pa2) ' is called the capacitance of the capacitor. Qceasion
ally the word condenser is also nsed for capacitor. It is a purely geometrical quantity
determined by the shape, size and separation of the two conductors. The capacitance ¢
of a capacitor is numerically equal to the charge required to be placed on the capacitor
to raise its potential by unity. The SI unit of capacitance is the coulomb per volt, called
the farad (F). One farad is the capacitance of a capacitor, which requires 1C charye {()
establish a pd of one volt across it. For practical purposes it is a too large unit. For m‘s
uni‘ts like micro farad (¢ ), nano farad (nF) or pico farad (pF) are uscd\: | P = 10° O,
InF= 10"F, 1pF= 10~12F.

Sometimes we speak of the capacitance of an isolated single conductor. Such &
_conductor is assumed to be the part of a capacitor whose other conductor is at Cufinity:

|
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1. parallel plate capacitor

| plate capacitor consists of t
wo parallel metal plates 3(‘]);11-;“50(] by a dielectric

Suppose the
' plates are of ar
f area A each and separated by a distance d. We
ates so that

taken

A paralle

mediunl-
_«ume that d 18 very sma . :
ass y small compared with the linear dimensions of the pl

:Sebzuilffif)ii? Isnligpzzellﬁzl;i:cted and the electric field between the plates may be
harges get distributed 86 egual an.d opposite charges £@Q are put on the p'lates' The
charg o ‘ on the plates in such a way that the field inside the thickness of
' es zero. Thus, charges spread only over the inner surfaces of the plates

the plates
and g1ve uniform charge densities +0 = /A and —o = Q/A as shown in Fig 4.11-1
2 = = as S I Ai-1.
and of magnitude o /e between

field will be uniform, normal to the plates
Jsewhere, where € is the permittivity of the medium.

I\x=0

\

The electric
the plates and zero e

A
+

,”'—4“‘-
—
f————
| —— 4

|

| 4

e————— i

|——

[ S —

| ~—— 4

|

|

===
"

N
_‘
> ——

Fig 4.11-1

a] difference between the plates is given by

1 1 oy . 1
——__/ E-(lF:—/ g—z'-(h—":——/ 9:([:1,
2 ' 2 €

The potenti

V=¢1—¢2= e

a }O_f.d—gﬂ
- Cmd—_f ' CA.

the capacitance of this capacitor is

Now by definition
Q €A ‘
C=v774 (4.11-1)
(z) Air capacitor
If the Sp;J,Ce between the plates ig air then its capacitance would be
eoA
=y (4.11-2)

="
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( 11) Capacitor with a composite dielectric medium

Let the medium between the plates consists of two linear dielectrics of thicknes
d> and permittivities ¢; and e, respectively (Fig 4.11-2). The field intensities Within th,
first and second media are given by

g g
FEy=— and E‘_?_ = —.
- €1 €2
I +c =
I
d-; € 1
% X——'d]
('Ijz £; 2 3
T - =0 X=d;+d2
Fig 4.11-2

So the potential difference between the plates would be

ds 0
' o o Q(dy d
V:'C)l—OQ:—/ Ezdl'— E1d$=—'d1+—'d2=;<—+—2 .
d1+dy d; €1 €2 A

Therefore, the capacitance in this case, would be

Y
= =05 (4.11-3)

e
d d d dy ?
=l a2 1 L2

T K1+K2

<O
A

where K1 and Ky are the dielectric constants of the two media. For g capacitor with
several dielectric media, y

A
= 4.11-4)
T Z o
_ +G

alr 1

d M///////////////////W, t
. air ’
L -0
Fig 4.11-3

As a special case let us consider

i a parallel plate air capacitor with a dielectric slab of
thickness £(¢ < d) and permittivity

€ introduced between the plates (Fig 4.11-3). In £his
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se, pd between the plates would bhe
Caotn

and capacitance
[¢

C= AP = v/ : (4.11-5)
Vv (l—t-}-T"(- (l—t(l—%(-)'

As the d.l()lGCtl'lC CO_IlSté’mt K > 1, comparison with Eq. (4.11-2) shows that the
capacitance 1ncreases with the introduction of the diclectric slab.
(i) Capacitor with a nonuniform dielectric

Suppose the space between the plates is filled with a nonuniform diclectric whose dielec-
iric constant varies linearly from one plate to the other. Let the diclectric constant at 2
at a distance z from the plate 1 be K and 4 = o (constant). Therefore, K =oac+[

da
(constant). :
Now at z = 0, let K = K and at 2 = d, K = K. So =Ky and o = Kr;;l(, _Thus,
Ky— K
K== Li+ K.
d
Ki 1 x=0
lx +0
P
2 —
K p x=d
Fig 4.11-4
Now field at P is J - .
T
E= _E K €0 [—J——'LK dh i }{1]
Therefore, pd between the plates is °
-1 o 0 Kdl'
VZ‘A Ed’L' S 60{1](’:;]@""1{] 0
Ky — K
= __g.__l——-—--ln( z'd 1.'1;+K1>
B €0 K2 i Kl d
Qd_ In 52

\

- Ky K

.

Lt
el

74

7,

//1,1/’

¥y



Foundations of ELECTRICITY AND MAGNF‘T[S

Now by definition the capacitance is
o, Q (()A([\"Q . I\’l) :
TV T Tdn(Ka/Ky) 4.1,

2. Cylindrical capacitor

of a pair of long concentric metal cylinders, the SPace
a dielectric. The coaxial cable used in commnnica-tion
such a capacitor. Let a and b be the radii of the
ely and € be the permittivity of the dielectric mediyp,
(Fig 4.11-5). Suppose equal and opposite charges +@ and —Q are put on the inner apg

outer cylinders respectively. By symmetry the electric field will be radial from the ayj
If \ be the charge per unit length on the inner cylinde

A cvlindrical capacitor consists
between them being filled with
system is a common example of
inner and outer cylinders respectiv

if we are far away from the ends.
then electric field is given by

L]

\ b
i

Fig 4.11-5

Now the potential difference between the two cylinders is

‘ 1 b b
V=¢1—¢2=—/ E-dv":/Ed'r::—A— 511————)—\—1119-
9 Ja 2me f, T 2me @
B.y definition the capacitance per unit length is
O = .)lr 4 27re. (4,11—7)
V. Ink
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[t is interesting to note that, if (he

- 2ap between the evli P — ared
- lwee e T8 IS Very compare
Gith 104y if b — a € a then we ylinders is very smal pé

can write

- 27‘(’(: ¢
) = — o 21me €-2ma
In (1 4 bze\ ™ b= T ’
(I I O ) == b-—-a

Ginee 2ra is the area per unj ; - . . v fu
Hll' A pel 'mnl, length, the formula can be identified to be similar to
that ol & parallel plate capacitor,

3. Spherical capacitor

A spherical capacitor consists of a pair concentric metal spheres, the space between them
heing filled with o diclectric. Let a and b he the radii of the inner and outer spheres
respectively and ¢ be the permittivity of the dielectric medium (Fig 4.11-6). Suppose equal
and opposite charges () and —@ are put on the inner and outer spheres respectively.
by symmetry the field lines will be radial. The electric field at a distance r from the
common centre O s

: ey fora<r<hb
/.',' ——]
0, for » < a and » > b.

Fig 4.1 1-6

Now the pd between the spheres 18

o b . Q /'l‘ dr - Q 1 |
Vo= ghy — pp = — / E df = / Edr = Are J, r* 4dme \a b
2 s it

1

\ o af the capacitor is

Aree dmeab 5
0=l =7", (4.11-8)
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Special cases
(i) Isolated sphere
An isolated sphere may be assumed to form a spherical capacitor whose oyt

shell is at infinity. So putting b = oq in Eq. (4.11-8) we may get the €2p
isolated sphere as

er spheriCal
aCltanCe Of a

C =4mea (4_11_9)

(i) Outer sphere is earthed

If the outer sphere is grounded its charge does not flow to the gr.ound because it helg
by the opposite charge of the inner sphere. If the system is initially uncharged 5

put a charge +Q on the inner sphere, this will induce a, charge —Q
So in this Case, capacitanc

nd We
on the outer Sphere.
e will be the same as given by the Eq. (4.11-8).

Suppose that the total charge on the outer s

grounded sphere a part of 4, say, +
and the rest Q

a charge —¢; o

phere be +Q. Due to the presence of inng
g1 will lie on the inner surface of the outer sphere
— q1 will lie on its outer surface (Fig 4.11-7). The charge +q1 will induce
n the inner sphere. Thus, the system can be considered as a paralll

combination of two capacitors: (a) one between the inner sphere and the inner surface
of the outer sphere and (0) the outer surface of

' the outer sphere and the earth. Hence.
capacitance of the system would be | :

Fig4.11.7
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;. Capacitance between two long thin parallel wires in air

The overhead transmission line is a commop example of such a capacitor system. Let

; be the radius of each wire, d be the distance between them (d > a) and +A be the
charge per un{t length of'w1rc 1 and =) be the charge per unit length of wire 2. The
otal electric field at a point P at a distance 2 from the wire 1 is
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Fig4.11-8

Hence, the pd between the wires is given by

> ) ‘d—a 1 1
= —pp=~— | Edr = = z
V=1d¢)— ¢y ./d-—a L 27e /u (:1; i d — .’L) 4%

= A s Al1d—a
= Tme [Inz —In(d — x)]
A, d—a
= —1In :
TEQ a
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~. Capacitance per unit length

TEN
= —0 (4.11-11)
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nd (4.11-12).
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412 Combination of Capacitors

(l‘ "t . . ‘ al . oY 41 .
aap‘“"tol‘s are often used in combinations. There are two simple combinations—series
! ,. ey iy se

il Parallel, Fig 4.12-1 shows the parallel combination of two capacitors, Here pd between
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the plates of each capacitor is the same and charge stored by a capacitor depends g,
its capacitance. Let V = V4 — V3 be the pd across each capacitor. Charge on 6
is g = C1V and that on Cy is go = C,V. The total charge on the two capacitors g
Q=q +qs=C\V+CoV = (Cy + C2)V. In terms of a single equivalent capacitor ¢/
which stores a charge @Q for a pd V we can write |

C= -g = C1+ Ca. (4.121)
In the general case of N capacitors in parallel we have the equivalent capacitor,
N
C = Z Cs. (4.12-2)
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Fig 4.12-1 Fig 4.12-2

Fig 4.12-2 shows the series combination of two capacitors. Here, each capacitor acquires
the same charge ¢ but pd across each is different. From Fig 4.12-2,
q

Gb/l”d’D:qu' and .¢D_¢B: oy

. pd across the combination is

q q 1 1 )
V= ga-da= (o= o)+ Go=s) = Er & =1(5 4 g
In terms of an equivalent single capacitor C, which stores a charge ¢ for a pd VW
can write
C q Cl ' CQ
In the general case of N capacitors in series we can write
= f: L . (1124
¢ 4 G
an AW

Note that the equivalent capacitance in parallel combination is greater th "
: : ) ot : : ig s
single one of them, whereas in series combination the equivalent capacitance 15 °
than any single one.
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3 Energy Stored in 2 Charged Capacitor
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114 Dielectric Strength and Maximum
Operating Voltage of a Capacitor
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SOLVED PROBLEMS|
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1. Find the electrostatic eneTgy stored in the space Sur"o""d’-"g ¢ uniformiy
tphericul u‘u:II (or a charged conducting 5p ) of redius R carrying a total
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