E BALAGURU 7

PROGRAMMING IN

ANSI

Flﬂ:h Edltlon

"IF"
W

Published by Tata McGraw Hill Education Private Limited,
7 West Patel Nagar, New Delhu 110 008

Tata McGraw-Hill

Programming in ANSI C, Se

Copyright © 2011, 2007, by Tata McGraw Hill Education Private Limited

First reprint 2010
DQLARRYZRABCC

No part of this publication may be reproduced or distributed in any form or by any means, eleetronic, mechanical,
photocopying, recording, or otherwise or stored in a database or retrieval system without the prior written permission of
the publishers. The program listings (if any) may be entered, stored and executed in a computer system, but they may not
be reproduced for publication.

This edition can be exported from India only by the publishers,
Tata McGraw Hill Education Private Limited.

ISBN (13 digits): 978-0-07-068182-8

ISBN (10 digits): 0-07-068182-1

Vice President and Managing Director—MecGraw-Hill Education: Asia Pacific Region: Ajay Shukla

Head—Higher Education Publishing and Marketing: Vibha Mahajan
Manager: Sponsoring—SEM & Tech Ed: Shalini Jha

Asst Sponsoring Editor: Surabhi Shukla

Development Editor: Surbhi Suman

Executive—Editorial Services: Sohini Mukherjee

Jr Production Manager: Anfali Razdan

Dy Marketing Manager—SEM & Tech Ed: Biju Ganesan

General Manager—Production: Rajender P Ghansela
Asst General Manager —Production: B L Dogra

Information contained in this work has been obtained by Tata McGraw-Hill, from sources beheved to be reliable. However,
neither Tata McGraw-Hill nor its authors guarantee the accuracy or completeness of any information published herein,
and neither Tata McGraw-Hill nor its authors shall be responsible for any errors, omissions, or damages arising out
of use of this information. This work is published with the understanding that Tata MeGraw-Hill and its authors are
supplying information but are not attempting to render engineering or other professional services. If such services are
required, the assistance of an appropriate professional should be sought.

Typeset at Text-o-Graphics, B1/56 Arawali Apartment, Sector 34, Noida 201301 and
printed at Gopsons, A — 2 & 3, Sector — 64, Noida, U.P. - 201 301

Cover Printer: Gopsons

The McGraw-Hill Lompanies

Contents ©

Preface to the Fifth Edition

1 Overview of C
1.1 Historyof C I
1.2 Importance of C 3
1.3 Sample Program 1: Printing a Message 3
1.4 Sample Program 2: Adding Two Numbers 6
1.5 Sample Program 3: Interest Calculation 8
1.6 Sample Program 4: Use of Subroutines 10
1.7 Sample Program 5: Use of Math Functions 1
1.8 Basic Structure of C Programs 12
1.9 Programming Style 14
1.10 Executing a ‘C' Program 14
1.11 Unix System I6
1.12 Ms-Dos System 18

Review Questions 19
Programming Exercises 20

2 Constants, Variables, and Data Types

2.1

Introduction 23

v

Character Set 23

23 C Tokens 25

2.4

Keywords and Identifiers 25

25 Constants 26
2.6 Vanables 30

2.7

Data Types 31

2.8 Declaration of Variables 34

2.9

Declaration of Storage Class 37

2.10

Assigning Values to Variables 38

2.11

Defining Symbolic Constants 44

212

Declaring a Variable as Constant 45

2.13

Declaring a Variable as Volatile 45

xi

23

VIBHAS
Sticky Note
+11

vi I Contents

2.14 Overflow and Underflow of Data 46

Review Questions 49
Programming Exercises 51

3 Operaiors and Expressions
3.1 Introduction 52
3.2 Arithmetic Operators 52
3.3 Relational Operators 55
3.4 Logical Operators 57
3.5 Assignment Operators 57
3.6 Increment and Decrement Operators 59
3.7 Conditional Operator 61
3.8 Bitwise Operators 61
3.9 Special Operators 61
3.10 Arithmetic Expressions 63
3.11 Evaluation of Expressions 64
3.12 Precedence of Arithmetic Operators 65
3.13 Some Computational Problems &7
3.14 Type Conversions in Expressions 68
3.156 Operator Precedence and Associativity 72
3.16 Mathematical Functions 74

Review Questions 78
Programming Exercises 81

4 Managing Input and Output Operations

41 Introduction 84
4.2 Reading a Character 85

4.3 Writing a Character 88
4.4 Formatted Input 89
4.5 Formatted Output 98

Review Questions 110
Programming Exercises 112

5 Decision Making and Branching

51 Introduction 174

5.2 Decision Making with IF Statement 114
5.3 Simple IF Statement 115

54 The JF. . ELSE Statement 119

5.0 Nesting of IF....ELSE Statements 122
56 The ELSE IF L.adder 126

57 The Switch Statement 129

58 The ? : Operator 133

5.9 The GOTO Statement 136

Review Questions 144
Programming Exercises 148

vil

Cuntenu

6 Decision Making and Looping
6.1 Introduction 152
6.2 The WHILE Statement 154

6.3 The DO Statement 157

6.4 The FOR Statement 159
6.5 Jumpsin LOOPS 166
6.6 Concise Test Expressions 174

Review Questions 182
Programming Exercizses 186

7 Arrays
71 Introduction 190
7.2 One-dimensional Arrays 192
7.3 Declaration of One-dimensional Arrays 193
7.4 Initialization of One-dimensional Arrays 195
7.5 Two-dimensional Arrays 199
7.6 Initializing Two-dimensional Arrays 204
7.7 Multi-dimensional Arrays 208
7.8 Dynamic Arrays 209
7.9 More about Arrays 209

Review Questions 223
Programming Exercises 225

8 Character Arrays and Strings
81 Introduction 229
8.2 Declaring and Initializing String Variables 230
8.3 Reading Strings from Terminal 231
8.4 Writing Strings to Screen 236
8.5 Arithmetic Operations on Characters 241
8.6 Putting Strings Together 242
8.7 Comparison of Two Strings 244
8.8 String-handling Functions 244
8.9 Table of Strings 250
8.10 Other Features of Strings 252

Review Questions 257
Programming Exercises 2589
9 User-defined Functions
9.1 Introduction 262
9.2 Need for User-defined Functions 262
9.3 A Multi-function Program 263
94 FElements of User-defined Functions 266
95 Definiti f Functi 067
9.6 Return Values and their Types 269

97 Function Calls 270
49 Pinize Deolsratt 279

152

190

229

262

vm[—_ Emnc - . ot

Category of Functions 274
ﬂ.lﬂ No Arguments and no Return Values 274
9.11 Arguments but no Return Values 277
9.12 Arguments with Return Values 280
9.13 No Arguments but Returns a Value 284
9.14 Funections that Return Multiple Values 285
9.15 Nesting of Functions 286
9.16 - Recursion 288 :
9.17 Passing Arrays to Functions 289
9.18 Passing Strings to Functions 294
9.19 The Scope, Visibilitv and Lifetime of Variables 295
9.20 Multifile Programs 305

Review Questions 311
: Programming Exercises 315
10 Structures and Unions
101 Introduction 317
10.2 Defining a Structure 317
10.3 Declaring Structure Variables 318
10.4 Accessing Structure Members 321
10.6 Copying and Comparing Structure Variables 324
10.7 Operations on Individual Members 326
10.8 Arrays of Structures 327
10.9 Arrays within Structures 329
10,10 Structures within Structures 331
10.11 Structures and Functions 333
10.12 Unions 335
10,13 Size of Structures 337
Review Questions 344
Programming Exercises 348

11 Pointers
11.1 Introduction 351
11.2 Understanding Pointers 351
11.3 Accessing the Address of a Variable 354
11.4 Declaring Pointer Variables 355
11.5 Initialization of Pointer Variables 356
11.6 Accessing a Variable through its Pointer 358
11.7 Chain of Pointers 360
11.8 Pointer Expressions 361
11.9 Pointer Increments and Scale Factor 362
11.10 Pointers and Arrays 364
11.11 Pointers and Character Strings 367
11.12 Array of Pointers 369

317

351

Contents i ix

11.13 Pointers as Function Arguments 370
11.14 Functions Returning Pointers 373
11.15 Pointers to Functions 373
11.17_ Troubl th Poin 379

Review Questions 385

Programming Exercises 3858

12 File Management in C 389

12.1 Introduction 389

12.2 Defining and Opening a File 390

12.3 Closing a File 391

124 Input/Output Operations on Files 392

12.5 Error Handling During I/O Operations 398
126 Random Access to Files 400

12.7 Command Line Arguments 405

Review Questions 408
Programming Exercises 409

13 Dynamic Memory Allocation and Linked Lists 411
131 Introduction 411
13.2 Dynamic Memory Allocation 411
13.3 Allocating a Block of Memory: MALLOC 413
13.4 Allocating Multiple Blocks of Memory: CALLOC 415
13.5 Releasing the Used Space: Free 415 .
13.6 Altering the Size of a Block: REALLOC 416
13.7 Concepts of Linked Lists 417
13.8 Advantages of Linked Lists 420
13.9 Types of Linked Lists 421
13.10 Pointers Revisited 422
13.11 Creating a Linked List 424
13.12 Inserting an Item 428
13.13 Deleting an Item 431
13.14 Application of Linked Lists 433

Review Questions 440
Programming Exercises 442

14 The Preprocessor 444

14.1 Introduction 444

14.2 Macro Substitution 445

14.3 File Inclusion 449

14,4 Compiler Control Directives 450
14.5 ANSI Additions 453

Review Questions 456
Programming Exercises 457

X I Contents
15 Developing a C Program: Some Guidelines

15.1 Introduction 458

15.2 Program Design 458
15.3 Program Coding 460

15.4 Common Programming Errors 462
15.5 Program Testing and Debugging 469
15.6 Program Efficiency 471

Review Questions 472

Appendix I: Bit-level Programming 474
Appendix II: ASCII Values of Characters 480
Appendix III: ANSI C Library Functions 482
Appendix IV: Projects 486

Appendix V: (C99 Features 537

Bibliography
Index

458

o045
547

Preface to the Fifth Edition

combines the features of high-level language with the elements of the assembler, it is suitable
for both systems and applications programming. It is undoubtedly the most widely used general-
purpose language today.

Since its standardization in 1989, C has undergone a series of changes and improvements in order to
enhance the usefulness of the language. The version that incorporates the new features is now referred
to as C99.

The fifth edition comes with a free CD. The CD contains the programs of the book along with two
major projects in ready-to-compile and execute format.

Cis a powerful, flexible, portable and elegantly structured programming language. Since C

Organization of the Book

The book starts with an overview of C, which talks about the history of C, basic structure of C programs
and their execution. The second chapter discusses how to declare the constants, variables and data types.
The third chapter describes the built-in operators and how to build expressions using them. The fourth
chapter details the input and output operations. Decision making and branching is discussed in the fifth
chapter, which talks about the if-else, switch and goto statements. Further, decision making and looping
is discussed in Chapter six, which covers while, do and for loops. Arrays and ordered arrangement of
data elements are important to any programming language and have been covered in chapters seven and
eight. Strings are also covered in Chapter eight. Chapters nine and ten are on functions, structures and
unions. Pointers, perhaps the most difficult part of C to understand, is covered in Chapter eleven in the
most user-friendly manner. Chapters twelve and thirteen are on file management and dynamic memory
allocation respectively. Chapter fourteen deals with the preprocessor, and finally Chapter 15 15 on
developing a C program, which provides an insight on how to proceed with development of a program.
The above organization would help the students in understanding C better if followed appropriately.

The content has been revised keeping the updates which have taken placed in the field of C
programming and the present day syllabus needs. As always, the concept of learning by example. has
been stressed throughout the book. Each major feature of the language is treated in depth followed by a
complete program example to illustrate its use. The sample programs are meant to be both simple and
educational,

Each chapter includes a section at the beginning to introduce the topic in a proper perspective. It also
provides a quick look into the features that are discussed in the chapter. Wherever necessary, pictorial
descriptions of concepts are included to improve clarity and to facilitate better understanding. Language

xii I Preface

tips and other special considerations are highlighted as notes wherever essential. Following are some of
the key features of the book.

% Free CD with the book containing—
= [Executable codes to the programs (given inside the book) in chapterwise fashion.
= Two programming projects: Inventory and Record Entry.
Codes with comments are provided throughout the book to illustrate how the varnious features
of the language are put together to accomplish specified tasks.
Supplementary information and notes that complement but stand apart from the general text
have been included in boxes.
Guidelines for developing efficient C programs are given in the last chapter, together with a list
of some common mistakes that a less experienced C programmer could make.
Case studies at the end of the chapters illustrate common ways C features are put together and
also show real-hfe apphications.
The Just Remember section at the end of the chapters lists out helpful hints and possible problem
areas.
Numerous chapter-end questions and exercises provide ample opportunities to the readers to
review the concepts learned and to practice their applications.
% Programming projects discussed in the appendix give insight on how to integrate the various

features of C when handling large programs.

® < o 9

d

@

Supplementory Material

The book is also accompanied with a website (http./’www.mhhe.com/balagurusamy/ansic5e) which
includes the following:

For the Instructor

- Chapterwise PowerPoint Slides
For the Student

< Case Studies (chapterwise)

- Two mini projects with step-by-step description and user manual.
- Reading matenal on C

This book is designed for all those who wish to be C programmers, regardless of their past knowledge
and experience in programming. It explains in a simple and easy-to-understand style the what, why and
how of programming with ANSI C.

E Balagurusamy

Feedback

Suggestions and constructive criticism always go a long way in enhancing any endeavour. We request
all readers to email us their valuable comments/views/feedback for the betterment of the book at

tmh.csefeedback(@gmail.com mentioning the title and anthor name in the subject line. Please report any
piracy spotted by you as well!

Overview of C

1.1| HISTORY OF C

‘C’ seems a strange name for a programming language. But this strange sounding language
is one of the most popular computer languages today because it 18 a structured, high-level,
machine independent language. It allows software developers to develop programs without
worrying about the hardware platforms where they will be implemented.

The root of all modern languages is ALGOL, introduced in the early 1960s. ALGOL was
the first computer language to use a block structure. Although it never became popular in
USA, it was widely used in Europe. ALGOL gave the concept of structured programming to
the computer science community. Computer scientists like Corrado Bohm, Guiseppe Jacopini
and Edsger Dijkstra popularized this concept during 1960s. Subsequently, several languages
were announced. : :

In 1967, Martin Richards developed a language called BCPL (Basic Combined Program-
ming Language) primarily for writing system software. In 1970, Ken Thompson created a
language using many features of BCPL and called it simply B. B was used to create early
versions of UNIX operating system at Bell Laboratories. Both BCPL and B were “typeless”
system programming languages.

C was evolved from ALGOL, BCPL and B by Dennis Ritchie at the Bell Laboratories in
1972. C uses many concepts from these languages and added the concept of data types and
other powerful features. Since it was developed along with the UNIX operating system, it is
strongly associated with UNIX. This operating system, which was also developed at Bell
Laboratories, was coded almost entirely in C. UNIX is one of the most popular network
operating systems in use today and the heart of the Internet data superhighway.

For many years, C was used mainly in academic environments, but eventually with the
release of many C compilers for commercial use and the increasing popularity of UNIX, it
began to gain widespread support among computer professionals. Today, C is running under
a variety of operating system and hardware platforms.

During 1970s, C had evolved into what is now known as “traditional C”. The language
became more popular after publication of the book ‘The C Programming Language’ by Brian
Kerningham and Dennis Ritchie in 1978. The book was so popular that the language came to
be known as “K&R C” among the programming community. The rapid growth of C led to the
development of different versions of the language that were similar but often incompatible.
This posed a serious problem for system developers.-

2 I Programming in ANSI C

To assure that the C language remains standard, in 1983, American National Standards
Institute (ANSI) appointed a technical committee to define a standard for C. The committee
approved a version of C in December 1989 which is now known as ANSI C. It was then
approved by the International Standards Organization (ISO) in 1990. This version of C is
also referred to as C89.

During 1990's, C++, a language entirely based on C, underwent a number of
improvements and changes and became an ANSI/ISO approved language in November 1977,
C++ added several new features to C to make it not only a true object-oriented language but
also a more versatile language. During the same period, Sun Microsystems of USA created a
new language Java modelled on C and C++.

All popular computer languages are dynamic in nature. They continue to improve their
power and scope by incorporating new features and C is no exception. Although C++ and
Java were evolved out of C, the standardization committee of C felt that a few features of
C++/Java, if added to C, would enhance the usefulness of the language. The result was the
1999 standard for C. This version is usually referred to as C99. The history and development
of C is illustrated in Fig. 1.1.

1960 ALGOL i International Group
i
1967 BCPL I Martin Richards
T
1970 [B8 I Ken Thompson
; ¥
1972 | Traditional C I Dennis Ritchie
i
1978 ' K&R C | Kemighan and Ritchie
1989 | ANSI C [ANSI Committee
|
1
1990 ANSIHISO C ISO Committee
18499 co9 I Standardization Committee

Fig. 1.1 History of ANSI C

Overview of C Ia

Although C99 is an improved version, still many commonly available compilers do not
support all of the new features incorporated in C99. We, therefore, discuss all the new
features added by C99 in an appendix separately so that the readers who are interested can
quickly refer to the new material and use them wherever possible.

1.2 IMPORTANCE OFC

The increasing popularity of C is probably due to its many desirable qualities. It is a robust
language whose rich set of built-in functions and operators can be used to write any complex
program. The C compiler combines the capabilities of an assembly language with the features
of a high-level language and therefore it is well suited for writing both system software and
business packages. In fact, many of the C compilers available in the market are written in C,

Programs written in C are efficient and fast. This is due to its variety of data types and
powerful operators. It is many times faster than BASIC. For example, a program to
increment a variable from 0 to 15000 takes about one second in C while it takes more than 50
seconds in an interpreter BASIC.

There are only 32 keywords in ANSI C and its strength lies in its built-in functions.
Several standard functions are available which can be used for developing programs.

C is highly portable. This means that C programs written for one computer can be run on
another with little or no medification. Portability is important if we plan to use a new
computer with a different operating system.

C language is well suited for structured programming, thus requiring the user to think of
a problem in terms of function modules or blocks. A proper collection of these modules would
make a complete program. This modular structure makes program debugging, testing and
maintenance easier.

Another important feature of C is its ability to extend itself. A C program is basically a
collection of functions that are supported by the C library. We can continuously add our own
functions to C library. With the availability of a large number of functions, the programming
task becomes simple.

Before discussing specific features of C, we shall look at some sample C programs, and
analyze and understand how they work.

1.3| SAMPLE PROGRAM I|: PRINTING A MESSAGE

Consider a very simple program given in Fig. 1.2.

main()

{

! o AN printing begins..... s 4
printf("Il see, I remember");

I i printing ends.....c. o

}

e S T L e ..'E-'Cp_- iryly '.":, n ﬂﬂ" H-Fﬂ L T, ;":--.W.tm*r.-';_"-'—.”#': ."i’;E:i':-.E:'.--L-'.’" T

 Fig.1:2 A program to print one line of text:

4|

This program when executed will producze the fullnwmg output:
I see, I remember

Let us have a close look at the program. The first line informs the system that the name of
the program is main and the execution begins at this line. The main() is a special function
used by the C system to tell the computer where the program starts. Every program must
have exactly one main function. If we use more than one main function, the compiler cannot
understand which one marks the beginning of the program.

The empty pair of parentheses immediately following main indicates that the function
main has no arguments (or parameters). The concept of arguments will be discussed in
detail later when we discuss functions (in Chapter 9).

The opening brace “{ " in the second line marks the beginning of the function main and
the closing brace “}” in the last line indicates the end of the function. In this case, the closing
brace also marks the end of the program. All the statements between these two braces form
the function body. The function body contains a set of instructions to perform the given task.

In this case, the function body contains three statements out of which only the printf line
is an executable statement. The lines beginning with /* and ending with */ are known as
comment lines. These are used in a program to enhance its readability and understanding.
Comment lines are not executable statements and therefore anything between /* and */ is
ignored by the compiler. In general, a comment can be inserted wherever blank spaces can
occur—at the beginning, middle or end of a line—"but never in the middle of a word ”.

Although comments can appear anywhere, they cannot be nested in C. That means, we
cannot have comments inside comments. Once the compiler finds an opening token, it
ignores everything until it finds a closing token. The comment line

Jfananu/ftsenas* anentf

is not valid and therefore results in an error.

Since comments do not affect the execution speed and the size of a compiled program, we
should use them liberally in our programs. They help the programmers and other users in
understanding the various functions and operations of a program and serve as an aid to
debugging and testing. We shall see the use of comment lines more in the examples that
follow.

Let us now look at the printf() function, the only executable statement of the program.

printf("I see, I remember");

printfis a pradaﬁned standard C function for printing output. Predefined means that it is a
function that has already been written and compiled, and linked together with our program
at the time of linking. The concepts of compilation and linking are explained later in this
chapter. The printf function causes everything between the starting and the ending
quotation marks to be printed out. In this case, the output will be:

I see, I remember
Note that the print line ends with a semicolon. Every statement in C should end with a

semicolon () mark.
Suppose we want to print the above quotation in two lines as

I see, -
I remember! i

This can be achieved hy addmg another printf function as shown below:

- -
P e

printf("I see, \n");
printf("I remember !");

The information contained between the parentheses is called the argument of the func-
tion. This argument of the first printf function is “ I see, \n” and the second is “I remember !”.
These arguments are simply strings of characters to be printed out.

Notice that the argument of the first printf contains a combination of two characters \
and n at the end of the string. This combination is collectively called the newline character.
A newline character instructs the computer to go to the next (new) line. It is similar in
concept to the carriage return key on a typewriter. After printing the character comma (,)
the presence of the newline character \n causes the string “I remember !” to be printed on
the next line. No space is allowed between \ and n.

If we omit the newline character from the first printf statement, then the output will
again be a single line as shown below.

I see, I remember !

This is similar to the output of the program in Fig. 1.2. However, note that there is no

space between , and 1.
It is also possible to produce two or more lines of output by one printf statement with the
use of newline character at appropriate places. For example, the statement

printf("I see,\n I remember !");

will output

I see,

I remember !
while the statement

printf("I\n.. see,\n. . . I\n. .. . remember !");

will print out

I

.« See,

DA |
- w - remember !

NOTE: Some authors recommend the inclusion of the statement
#include <stdio.h>

at the beginning of all programs that use any input/output library functions. However, this
is not necessary for the functions printf and scanf which have been defined as a part of the

C language. See Chapter 4 for more on input and output functions.
Before we proceed to discuss further examples, we must note one important point. C does

make a distinction between uppercase and lowercase letters. For example, printf and
PRINTF are not the same. In C, everything is written in lowercase letters. However,
uppercase letters are used for symbolic names representing constants. We may also use
uppercase letters in output strings like “I SEE” and “I REMEMBER”

The above example that printed I see, I remember is one of the simplest programs.

Fgurelﬂh:ghhghtsthegenam]fnrmatnfsuchmmpl&pmgrams All C programs need a
main function.

The main Function

The main is a part of every C program. C permits different forms of main state ment.
Following forms are allowed.

main()

« int main()

e void main()

¢ main(void)

o void main(void)
e int main(void)

The empty pair of parentheses indicates that the function has no arguments. This
may be explicitly indicated by using the keyword void inside the parentheses. We
may also specify the keyword int or void before the word main. The keyword void
means that the function does not return any information to the operating system and
int means that the function returns an integer value to the operating system. When
int is specified, the |ast statement in the program must be “return 0”. For the sake of
simplicity, we use the first form in our programs.

1.4| SAMPLE PROGRAM 2: ADDING TWO NUMBERS

Consider another program, which performs addition on two numbers and displays the re-
sult. The complete program is shown in Fig. 1.4.

/* Programm ADDITION line-1 */
/* Written by EBG i line-2 */
main() 3 IT /* line-3 */

{ /* line-4 */

"1 int number; /* line-5 */
float amount: /* line-6 */
{#; /* line-=7 */
i number = 100; /* line-8 */

/* 1line-9 */
amount = 30.75 + 75.35; /* 1ine-10 */
printf("%d\n",number) ; /* Tine-11 */
}:? printf("%5.2f",amount); /* 1ine=12 */

b i Fﬁ. 1.4 Program'to add two rumbers ’“‘""

-'E- T";-l o -\._-.:.'-:I'._.g'_.!:"'

This program when executed will produce the following output:

100
106.10

The first two lines of the program are comment lines. It is a good practice to use comment
lines in the beginning to give information such as name of the program, author, date, etc.
Comment characters are also used in other lines to indicate line numbers.

The words number and amount are variable names that are used to store numeric data.
The numeric data may be either in integer form or in real form. In C, all variables should be
declared to tell the compiler what the variable names are and what type of data they hold.

The variables must be declared before they are used. In lines 5 and 6, the declarations
int number;

float amount;
tell the compiler that number is an integer (int) and amount is a floating (float) point
number. Declaration statements must appear at the beginning of the functions as shown in
Fig.1.4. All declaration statements end with a semicolon; C suppnrta many other data types
and they are discussed in detail in Chapter 2.

The words such as int and float are called the keywords and cannot be used as variable
names. A list of keywords is given in Chapter 2.

Data is stored in a variable by assigning a data value to it. This is done in lines 8 and 10.
In line-8, an integer value 100 is assigned to the integer variable number and in line-10, the
result of addition of two real numbers 30.75 and 75.35 is assigned to the floating point
variable amount. The statements

number = 100;
amount = 30.75 + 75.35;

are called the assignment statements. Every assignment statement must have a semicolon

at the end.
The next statement is an output statement that prints the value of number. The print

statement i

printf("%d\n", number);
contains two arguments. The first argument “%d” tells the compiler that the value of the
second argument number should be printed as a decimal integer. Note that these arguments
are separated by a comma. The newline character \n causes the next output to appear on a
new line.

8| Programming in ANSI C
The last statement of the program
printf("%5.2f", amount);
prints out the value of amount in floating point format. The format specification %5.2f tells

the compiler that the output must be in floating point, with five places in all and two places
to the right of the decimal point.

1.5 SAMPLE PROGRAM 3: INTEREST CALCULATION

The program in Fig. 1.5 calculates the value of money at the end of each year of investment,
assuming an interest rate of 11 percent and prints the year, and the corresponding amount,
in two columns. The output is shown in Fig. 1.6 for a period of 10 years with an initial
investment of 5000.00. The program uses the following formula:

Value at the end of year = Value at start of year (1 + interest rate)

In the program, the variable value represents the value of money at the end of the year

while amount represents the value of money at the start of the year. The statement
amount = value ;

makes the value at the end of the current year as the value at start of the next year.

F il INVESTMENT PROBLEM *j
#define PERIOD 10
#define PRINCIPAL 5000.00 _
/* MAIN PROGRAM BEGINS */
main()
A i : DECLARATION STATEMENTS —*/
int year; '
float amount, value, inrate;
/* ASSIGNMENT STATEMENTS */

amount = PRINCIPAL:
inrate = 0.11;

year = 0;
P COMPUTATION STATEMENTS */
Fl COMPUTATION USING While LOOP ——*/

while(year <= PERIOD)
{ printf("s2d %8.2f\n",year, amount);
value = amount + inrate * amount;
year = year + 1;
amount = value;

o while LOOP ENDS i |

! ﬂwrﬂlw of C 1 9

Let us consider the new features introduced in this program. The second and third lines
begin with #define instructions. A #define instruction defines value to a symbolic constant
for use in the program. Whenever a symbolic name is encountered, the compiler substitutes
the value associated with the name automatically. To change the value, we have to simply
change the definition. In this example, we have defined two symbolic constants PERIOD
and PRINCIPAL and assigned values 10 and 5000.00 respectively. These values remain
constant throughout the execution of the program.

0 5000.00
1 5550.00
2 6160.50
3 6838.15
4 7590.35
5 8425.29
6 9352.07
7 10380.00
8 11522.69
g 12790.00

10 14197.11

Fig. 1.6 Output of the investment program

The #define Directive

A #define is a preprocessor compiler directive and not a statement. Therefore
#define lines should not end with a semicolon. Symbolic constants are generally
written in uppercase so that they are easily distinguished from lowercase variable
names. #define instructions are usually placed at the beginning before the main(
function. Symbolic constants are not declared in declaration section. Preprocessor
directives are discussed in Chapter 14.

We must note that the defined constants are not variables. We may not change their
values within the program by using an assignment statement. For example, the statement

PRINCIPAL = 10000.00;
is illegal.
The declaration section declares year as integer and amount, value and inrate as float-
ing point numbers. Note all the floating-point variables are declared in one statement. They
can also be declared as

10| Programming in ANSI C

float amount;
float value;
float inrate;
When two or more variables are declared in one statement, they are separated by a comma.
All computations and printing are accomplished in a while loop. while is a mechanism
for evaluating repeatedly a statement or a group of statements. In this case as long as the
value of year is less than or equal to the value of PERIOD, the four statements that follow
while are executed. Note that these four statements are grouped by braces. We exit the loop
when year becomes greater than PERIOD. The concept and types of loops are discussed in
Chapter 6.
C supports the basic four arithmetic operators (-, +, *, /) along with several others. They
are discussed in Chapter 3.

1.6/ SAMPLE PROGRAM 4: USE OF SUBROUTINES

So far, we have used only printf function that has been provided for us by the C system. The
program shown in Fig. 1.7 uses a user-defined function. A function defined by the user is
equivalent to a subroutine in FORTRAN or subprogram in BASIC.
Figure 1.7 presents a very simple program that uses a mul () function. The program will
print the following output.

Multiplication of 5 and 10 is 50

i PROGRAM USING FUNCTION wf

int mul (int a, int b); /*— DECLARATION o |

i MAIN PROGRAM BEGINS * /
main ()

{
int a, b,
a - H
b = 10;
c = mul (a,b):

printf ("multiplication of %d and %d is %d",a,b,c);

v MAIN PROGRAM ENDS
MUL() FUNCTION STARTS =
int mul (int x, int y)
int p;
{
i N

return(p);

ION ENDS o 4

FUNCT
P T T TR R I R B e T T T L e T o

- L
1 ¥ Sl O

Fig 17 A g ving o rdefred frcion

Bveiview of G]11

The mul () function multiplies the values of x and y and the result is returned to the
main () function when it is called in the statement
c =mul (a, b);
The mul () has two arguments x and y that are declared as integers. The values of a and
b are passed on to x and y respectively when the function mul () is called. User-defined
functions are considered in detail in Chapter 9.

1.7| SAMPLE PROGRAM 5: USE OF MATH FUNCTIONS

We often use standard mathematical functions such as cos, sin, exp, etc. We shall see now
the use of a mathematical function in a program. The standard mathematical functions are
defined and kept as a part of C math library. If we want to use any of these mathematical
functions, we must add an #include instruction in the program. Like #define, it is also a
compiler directive that instructs the compiler te link the specified mathematical functions
from the library. The instruction is of the form
#include <math.h>

math.h is the filename containing the required function. Figure 1.8 illustrates the use of
cosine function. The program calculates cosine values for angles 0, 10, 20............. 180 and
prints out the results with headings.

bk PROGRAM USING COSINE FUNCTION
#include <math.h>
#define. PI3.1416
#define MAX 180

main ()

& {

*

: int angle;
i float x,y;
angle = 0;
printf(" Angle Cos(angle)\n\n");

while(angle <= MAX)
{

x = (PI/MAX)*angle;

y = cosix);

printf("%15d %13.4f\n", angle, y);
angle = angle + 10;

Qutput
Angle Cos(angle)
" 0 1.0000
$ 10 0.9848
20 0.9397

30 0.8660

12|

40 0.7660
50° 0.6428
60 0.5000
70 0.3420
80 0.1736
90 ~0..0000

100 ~0.1737
110 - ~0.3420
120 ~0.5000
130 ~0.6428
140 -0.7660

150 ~0.8660

- 160 -0.9397

170 ~0.9848

~1.0000

Anuther#innludemntrucﬁnnthntmuﬁenreqmredm
#include <stdio.h>
stdio.h refers to the standard J/O header file containing standard input and output
functions

- The #include Directive

As mentioned earlier, C programs are divided into modules or functions. Some
functions are written by users, like us, and many others are stored in the C library.
Library functions are grouped category-wise and stored in different files known as
header files. If we want to access the functions stored in the library, it is necessary
to tell the compiler about the files to be accessed.

This is achieved by using the preprocessor directive #include as follows:
#include <filename >

filename is the name of the library file that contains the required function defini-
tion. Preprocessor directives are placed at the beginning of a program.

A list of library functions and header files containing them are given in Appendix III.

i

BASIC STRUCTURE OF C PROGRAMS _
The exumples dmnussadbnn far illustrate that a C program can be viewed as a group of build-
ing blocks called functions. A function is a subroutine that may include one or more state-

Overiewof €. |12

ments designed to perform a specific task. To write a C program, we first create functions
and then put them together. A C program may contain one or more sections as shown in Fig.
1.9,

The documentation section consists of a set of comment lines giving the name of the pro-
gram, the author and other details, which the programmer would like to use later. The link
section provides instructions to the compiler to link functions from the system library. The
definition section defines all symbolic constants.

There are some variables that are used in more than one function. Such variables are
called global variables and are declared in the global declaration section that is outside of all
the functions. This section also declares all the user-defined functions.

Every C program must have one main() function section. This section contains two parts,
declaration part and executable part. The declaration part declares all the variables used in
the executable part. There is at least one statement in the executable part. These two parts
must appear between the opening and the closing braces. The program execution begins at
the opening brace and ends at the closing brace. The closing brace of the main function
section is the logical end of the program. All statements in the declaration and executable
parts end with a semicolon(;).

i
Documentation Section
Link Section

s e —— = —

Daﬁmﬁnn Section
Global Declaration Section

main () Function Section

[
1

| Declaration part |

el T T S L i [R

| Executable part |

1
pE

Subprogram section

| L= e

| Function 1
| |
I . Function 2
! s

| = (User-defined functions) W

b T i

| Function n

L L TR o
= by
™ F oL
L R '-F' . P

The subprogram section contains all the user-defined functions that are called in the main
function. User-defined functions are generally placed immediately a.ﬁ;ar the main function,
although they may appear in any order.

14] Programming in ANS| C
All sections, except the main function section may be absent when they are not required.

1.9 PROGRAMMING STYLE

Unlike some other programming languages (COBOL, FORTRAN, etc.,) C is a free-form_lan-
guage. That is, the C compiler does not care, where on the line we begin typing. While this
may be a licence for bad programming, we should try to use this fact to our advantage in
developing readable programs. Although several alternative styles are possible, we should
select one style and use it with total consistency.

First of all, we must develop the habit of writing programs in lowercase letters. C program
statements are written in lowercase letters. Uppercase letters are used only for symbolic
constants,

Braces, group program statements together and mark the beginning and the end of func-
tions. A proper indentation of braces and statements would make a program easier to read
and debug. Note how the braces are aligned and the statements are indented in the program
of Fig. 1.5.

Since C is a free-form language, we can group statements together on one line. The state-
ments

b
¥ &3
a + X;

a
X
F 4

can be written on one line as
a=b; x = y+l; z = a+x;
The program
main()

printf("hello C");

may be written in one line like
main() {printf("Hello C")};
However, this style make the program more difficult to understand and should not be
used. In this book, each statement is written on a separate line.
The generous use of comments inside a program cannot be overemphasized. Judiciously
inserted comments not only increase the readability but also help to understand the program
logic. This is very important for debugging and testing the program.

1.10] EXECUTING A ‘C’ PROGRAM

Executing a program written in C involves a series of steps. These are:
1. Creating the program,;
2. Compiling the program,;
3. Linking the program with functions that are needed from the C library; and
4. Executing the program.
Figure 1.10 illustrates the process of creating, ::nmpﬂmg and executing a C program.
Although these steps remain the same irrespective of the operating system, system

Overview of C- |15

commands for implementing the steps and conventions for naming files may differ on
different systems.

An operating system is a program that controls the entire operation of a computer system.
All input/output operations are channeled through the operating system. The operating sys-
tem, which is an interface between the hardware and the user, handles the execution of user
programs. f

The two most popular operating systems today are UNIX (for minicomputers) and MS-
DOS (for microcomputers). We shall discuss briefly the procedure to be followed in executing
C programs under both these operating systems in the following sections.

' System Ready I

¥
= a8 §—| Enter Program
rogram Code p— gra F

Source Program

i |

Edit I
Source Program § i

. . ' Compile]
| G Compiler I ~ e Program

B R —

No T
e Link with
RYNERIE Y System Library

| Executable Object Code

! Exacute
< Input Dam ~| Object Code '
| |
! qD_EtEE_"nL Lngicf@ Logle G

Errors 7

Mo Errors

1
‘ CORRECT DUTF‘UT]

¥

'1E|

1.11 UNIX SYSTEM

Creating the program

Once we load the UNIX operating system into the memory, the computer is ready to receive
program. The program must be entered into a file. The file name can consist of letters, digits
and special characters, followed by a dot and a letter e¢. Examples of valid file names are:

hello.c
program. ¢
ebgl.c
The file is created with the help of a text editor, either ed or vi. The command for calling
the editor and creating the file is
ed filename

If the file existed before, it is loaded. If it does not yet exist, the file has to be created so
that it is ready to receive the new program. Any corrections in the program are done under
the editor. (The name of your system’s editor may be different. Check your system manual.)

When the editing is over, the file is saved on disk. It can then be referenced any time later
by its file name. The program that is entered into the file is known as the source program,
since it represents the original form of the program.

Compiling and Linking

Let us assume that the source program has been created in a file named ebgl.c. Now the
program is ready for compilation. The compilation command to achieve this task under UNIX
is

cc ebgl.c

The source program instructions are now translated into a form that is suitable for
execution by the computer. The translation is done after examining each instruction for its
correctness. If everything is alright, the compilation proceeds silently and the translated
program is stored on another file with the name ebgl.o. This program is known as object
code.

Linking is the process of putting together other program files and functions that are
required by the program. For example, if the program is using exp() function, then the
object code of this function should be brought from the math library of the system and
linked to the main program. Under UNIX, the linking is automatically done (if no errors are
detected) when the cc command is used.

If any mistakes in the syntax and semantics of the language are discovered, they are listed
out and the compilation process ends right there. The errors should be corrected in the
source program with the help of the editor and the compilation is done again.

The compiled and linked program is called the executable object code and is stored
automatically in another file named a.out.

Note that some systems use different compilation command for linking mathematical
functions.

I7: cc filename - Im "
is the command unde. UNIPLUS SYSTEM V operating system.

Overview of C - {17
‘Executing the Program

Execution is a simple task. The command
a.out

would load the executable object code into the computer memory and execute the instruc-

tions. During execution, the program may request for some data to be entered through the
keyboard. Sometimes the program does not produce the desired results. Perhaps, something

is wrong with the program logic or data. Then it would be necessary to correct the source
program or the data. In case the source program is modified, the entire process of compiling,
linking and executing the program should be repeated.

Creating Your Own Executable File. = —-

Note that the linker always assigns the same name a.out. When we compile another pro-
gram, this file will be overwritten by the executable object code of the new program. If we
want to prevent from happening, we should rename the file immediately by using the
command.

mv a.out name
We may also achieve this by specifying an option in the cc command as follows:
cc -0 name source-file

This will store the executable object code in the file name and prevent the old file a.out
from being destroyved.

Multiple Source Files

To compile and link multiple source program files, we must append all the files names to the
cc command.

cc filename-1.c ... filename-n.c

These files will be separately compiled into object files called

filename-i.o
and then linked to produce an executable program file a.out as shown in Fig. 1.11.

It is also possible to compile each file separately and link them later. For example, the

commands .

cc -c modl.c

cc —c modé.c

will compile the source files modl.c and meod2.¢c into objects files modl.0 and mod2.o. They
can be linked together by the command

cc modl.o mod2.0

we may also combine the source files and object files as follows:
cc modl.c mod2.0
Only mod1.c is compiled and then linked with the object file mod2.0. This approach is useful

when one of the multiple source files need to be changed and recompiled or an already exist-
ing object files is to be used along with the program to be compiled.

18 I Programming in ANSI C

C

Compiler and
preprocessor

L
[.
'
]
|

Linker

Fig. 1.11 Compilation of multiple files

1.12) MS-DOS SYSTEM

The program can be created using any word processing software in non-document mode. The

file name should end with the characters “.c” like program.c, pay.c, etc. Then the command
MSC pay.c

under MS-DOS operating system would load the program stored in the file pay.c and gener-
ate the object code. This code is stored in another file under name pay.obj. In case any
language errors are found, the compilation is not completed. The program should then be
corrected and compiled again.

The linking is done by the command

LINK pay.obj
which generates the executable code with the filename pay.,exe. Now the command

pay
would execute the program and give the results.

Just Remember

Every C program requires a main() function (Use of more than one main()
is illegal). The place main is where the program execution begins.

The execution of a function begins at the opening brace of the function and
ends at the corresponding closing brace.

C programs are written in lowercase letters. However, uppercase letters
are used for symbolic names and output strings.

All the words in a program line must be separated from each other by at
least one space, or a tab, or a punctuation mark.

Every program statement in a C language must end with a semicolon.
All variables must be declared for their types befcre they are used in the
program.

We must make sure to include header files using #include directive when
the program refers to special names and fungtions that it does not define.
Compiler directives such as define and inglude are special instructions

B B BB B B 2 B

Overview of C |19

to the compiler to help it compile a program. They do not end with a semi-

colon.

#3 The sign # of compiler directives must appear in the first column of the
line.

& When braces are used to group statements, make sure that the opening
brace has a corresponding closing brace.

(C is a free-form language and therefore a proper form of indentation of
various sections would improve legibility of the program.

#3 A comment can be inserted almost anywhere a space can appear. Use of
appropriate comments in proper places increases readability and under-
standability of the program and helps users in debugging and testing. Re-
member to match the symbols /# and */ appropriately.

.eview Questions

_.

1.1 State whether the following statements are true or false.
(a) Every line in a C program should end with a semicolon.
(b) In C language lowercase letters are significant.
(c) Every C program ends with an END word.
(d) main() is where the program begins its execution.
(e) A line in a program may have more than one statement.
(f) A printf statement can generate only one line of output.
(g) The closing brace of the main() in a program is the logical end of the program.
(h) The purpose of the header file such as stdio.h is to store the source code of a
program.
(1) Comments cause the computer to print the text enclosed between /* and */ when
executed.
(j) Syntax errors will be detected by the compiler.
1.2 Which of the following statements are true?
(a) Every C program must have at least one user-defined function.
(b) Only one function may be named main().
(c) Declaration section contains instructions to the computer.
1.3 Which of the following statements about comments are false?
(a) Use of comments reduces the speed of execution of a program.
(b) Comments serve as internal documentation for programmers.
(c) A comment can be inserted in the middle of a statement.
(d) In C, we can have comments inside comments.
1.4 Fill in the blanks with appropriate words in each of the following statements.
(a) Every program statement in a C program must end with a

(b} The Function is used to display the output on the screen.
(c) The header file contains mathematical functions.
(d) The escape sequence character causes the cursor to move to the

next line on the screen.
1.5 Remove the semicolon at the end of the printf statement in the program of Fig. 1.2
and execute it. What is the output?

20 | Programming in- ANSI G

1.6 In the Sample Program 2, delete line-5 and execute the program. How helpful is the
error message”?

1.7 Modify the Sample Program 3 to display the following output:

Year Amount
1 5500.00
2 6160.00
10 14197.11

1.8 Find errors, if any, in the following program:
/* A simple program
int main()

} /* Does nothing *.f

1.9 Find errors, if any, in the following program:

#include (stdio.h)
void main{void)

{
print("Hello C"):

1.10 Find errors, if any, in the following program:
Include <math.h>
main { }

FLOAT X;
X = 2.5;
Y = exp(x);
] Print(x,y):
1.11 Why and when do we use the #define directive?

1.12 Why and when do we use the #include directive?
1.13 What does void main(void) mean?
1.14 Distinguish between the following pairs:

{a) main() and void main{void)

(b) int main() and void main()
1.15 Why do we need to use comments in programs?
1.16 Why is the look of a program is important?
1.17 Where are blank spaces permitted in a C program?
1.18 Describe the structure of a C program.
1.19 Describe the process of creating and executing a C program under UNIX system.
1.20 How do we implement multiple source program files?

.rugramming Exercises e

1.1 Write a program that will print your mailing address in the following form:
First line : Name

1.2
1.3

1.4

1.5

1.6

1.7

1.8

1.8

- Owerview of C Iﬂ't

Second line : Door No, Street

Third ine : City, Pin code
Modify the above program to provide border lines to the address.
Write a program using one print statement to print the pattern of asterisks as shown
below:

1:

i 4

% %

e % e *

Write a program that will print the following figure using suitable characters.

1 £q """| 5 } I
25T IE

Given the radius of a circle, write a program to compute and display its area. Use a
symbolic constant to define the n value and assume a suitable value for radius.
Write a program to output the following multiplication table:

5%1=5

S5x2=10

5x3=15
5x10=50

(Given two integers 20 and 10, write a program that uses a function add() to add these
two numbers and sub() to find the difference of these two numbers and then display
the sum and difference in the following form:

20+ 10= 30

20-10=10
Given the values of three variables a, b and ¢, write a program to compute and display
the value of x, where

da
b-c

Execute your program for the following values:
(a) a=250,b=85,c=25
(b) a=300,b=70,c=70

Comment on the output in each case,
Relationship between Celsius and Fahrenheit is governed by the formula

x:

F=E+32
5

Write a program to convert the temperature

EEI Programming in ANSI C

(a) from Celsius to Fahrenheit and
(b) from Fahrenheit to Celsius.
1.10 Area of a triangle is given by the formula

A= [SGEa) (5b) (50

Where a, b and c are sides of the triangle and 25 = a + b + ¢. Write a program to
compute the area of the triangle given the values of a, b and c.

1.11 Distance between two points (x;, y;) and (x5, y3) is governed by the formula

D? = (xy — x,)* + (y — ¥,)

Write a program to compute D given the coordinates of the points.

1.12 A point on the circumference of a circle whose center is (o, 0) is (4,5). Write a program
to compute perimeter and area of the circle. (Hint: use the formula given in the
Ex. 1.11)

1.13 The line joining the points (2,2) and (5,6) which lie on the circumference of a circle is

the diameter of the circle. Write a program to compute the area of the circle.
1.14 Write a program to display the equation of a line in the form

ax+by=c

for a=5,b=8 and c=18.
1.15 Write a program to display the following simple arithmetic calculator

X = ¥ =

sum Difference =

Product = Division =

| = morww ocromw= = romw s ma= = == 2 RETEREE S S SR et il

Constants,Variébl_es,
and Data Types

2.1| INTRODUCTION

A programming language is designed to help process certain kinds of data consisting of
numbers, characters and strings and to provide useful output known as information. The
task of processing of data is accomplished by executing a sequence of precise instructions
called a program. These instructions are formed using certain symbols and words according
to some rigid rules known as syntax rules (or grammar). Every program instruction must
confirm precisely to the syntax rules of the language.

Like any other language, C has its own vocabulary and grammar. In this chapter, we will
discuss the concepts of constants and variables and their types as they relate to C program-

ming language.

2.2| CHARACTER SET

The characters that can be used to form words, numbers and expressions depend upon the
computer on which the program is run. However, a subset of characters is available that can
be used on most personal, micro, mini and mainframe computers. The characters in C are
grouped into the following categories:
1. Letters

2. Digits

3. Special characters

4. White spaces

The entire character set is given in Table 2.1.

The compiler ignores white spaces unless they are a part of a string constant, White spaces
may be used to separate words, but are prohibited between the characters of keywords and
identifiers.

24 Prograriming in ANSI €
Trigraph Characters

Many non-English keyboards do not support all the characters mentioned in Table 2.1. ANSI
C introduces the concept of “trigraph” sequences to provide a way to enter certain characters

that are not available on some keyboards. Each trigraph sequence consists of three charac-
ters (two question marks followed by another character) as shown in Table 2.2.
For example, if a keyboard does not support square brackets, we can still use them in a
program using the trigraphs 72 and 77).

Table 2.1 C Character Set

Uppercase A....Z | Pl b1 All decimal digits 0....9

Lowercasea.....zZ

Special Characters

, comma & ampersand

. period ~ caret

- semicolon * asterisk

: colon — minus sign

7 question mark + plus sign

* apostrophe < opening angle bracket
* quotation mark (or less than sign)

! exclamation mark > closing angle bracket
| vertical bar (or greater than sign)

/ slash (left parenthesis

\ backslash) right parenthesis

~ tilde [left bracket

_under score] right bracket

$ dollar sign { left brace

%o percent sign } right brace

number sign
White Spaces
Blank space
Horizontal tab
Carriage return
New line
Form feed

Table 2.2 ANSI C Trigraph Sequences

Trigraph sequence - ' . . " . Translation
= # number sign
™ [left bracket
7)] right bracket
T { left brace
7= } right brace
™ | vetical bar
7 \ back slash
Y A caret

77- ~ tilde

' Cunmm Varihb]e_s,.ptdﬂm; Types I 25

2.3 C TOKENS

In a passage of text, individual words and punctuation marks are called tokens. Similarly, in
a C program the smallest individual units are known as C tokens. C has six types of tokens
as shown in Fig. 2.1. C programs are written using these tokens and the syntax of the lan-

guage.

i
C TOKENS |

|
S— ..I .|
i . S ey BRI | (A
| Keywords ' | Constants r | Sirings -+ Operators
float =155 "ABC” | + -
while 100 "year” %
: Identifiers l Special Symbols "
|1
A =t |
main []
amaount {}

~Fig. 21 C tokens and examples

24, KEYWORDS AND IDENTIFIERS

Every C word is classified as either a keyword or an identifier. All keywords have fixed
meanings and these meanings cannot be changed. Keywords serve as basic building blocks
for program statements. The list of all keywords of ANSI C are listed in Table 2.3. All key-
words must be written in lowercase. Some compilers may use additional keywords that must
be identified from the C manual.

C99 adds some more keywords. See the Appendix "C99 Features". |

Tahle 2.3 ANSI C Keywords

auto - double L SR e i SUFDIOL
break else long switch
case enum register typedef
char . extern return union
const float short unsigned
continue for signed vioid
default goto sizeof volatile
do if static while

Identifiers refer to the names of variables, functions and arrays. These are user-defined
names and consist of a sequence of letters and digits, with a letter as a first character. Both

2]

uppercase and lowercase letters are parmmted althnugh lowercase letters are commonly
used. The underscore character is also permitted in identifiers. It is usually used as a link
between two words in long identifiers.

Rules for Identifiers

First character must be an alphabet (or underscore).
Must consist of only letters, digits or underscore.
Only first 31 characters are significant.

Cannot use a keyword.

Must not contain white space.

W oW N

2.5| CONSTANTS

Constants in C refer to fixed values that do not change during the execution of a program. C
supports several types of constants as illustrated in Fig. 2.2,

| CONSTANTS l
|

/ \
f/ Hi.
/ ' b
|
| Numeric constants I ‘ Character constanis I
. /
.'"Il Il'"'.__
F A - s
!nl.EgEr Flarai Single character | String i
constants constants constants mnstants
_. F Bniu: tj!pes of C cnnstunfs

Integer Constants

An integer constant refers to a sequence of digits. There are three types of integers, namely,
decimal integer, octal integer and hexadecimal integer.

Decimal integers consist of a set of digits, 0 through 9, preceded by an optional — or + sign.
Valid examples of decimal integer constants are:

123 -321 0 654321 +78

Embedded spaces, commas, and non-digit characters are not permitted between digits.

For example,
15750 20,000 $1000

are illegal numbers.

Constants, Variables, and Data Types EET

Note: ANSI C supports unary plus which was not defined earlier.

An octal integer constant consists of any combination of digits from the set 0 through 7,

with a leading 0. Some examples of octal integer are:
037 0 0435 05651

A sequence of digits preceded by Ox or 0X is considered as hexadecimal integer. They may
also include alphabets A through F or a through f The letter A through F represent the
numbers 10 through 15. Following are the examples of valid hex integers:

0X2 0x9F 0Xbed Ox

We rarely use octal and hexadecimal numbers in programming.

The largest integer value that can be stored is machine-dependent. It is 32767 on 16-bit
machines and 2,147,483,647 on 32-bit machines. It is also possible to store larger integer
constants on these machines by appending gqualifiers such as U,L. and UL to the constants.
Examples:

56789U or 56789%u (unsigned integer)
987612347TUL or 98761234ul (unsigned long integer)
9876543L or 98765431 (long integer)

The concept of unsigned and long integers are discussed in detail in Section 2.7.

Example 2.1J Representation of integer constants on a 16-bit computer.

The program in Fig.2.3 illustrates the use of integer constants on a 16-bit machine. The
output in Fig. 2.3 shows that the integer values larger than 32767 are not properly stored on
a 16-bit machine. However, when they are qualified as long integer (by appending L), the
values are correctly stored.

Program
main()

printf("Integer values\n\n");
printf("%d %d %d\n", 32767,32767+1,32767+10);
printf{"\n");
printf("Long integer values\n\n");
} printf("%1d %1d %1d\n", 32767L,32767L+1L,32767L+10L);
Output
Integer values
32767 -32768 -32759

Long integer values
32767 32768 32777

SRR roakel LS 1 S =, T

i:ig. 2.3 Representation of integer constants on |é-bit machine
Real Constants

Integer numbers are inadequate to represent quantities that vary continuously, such as
distances, heights, temperatures, prices, and so on. These quantities are represented by
numbers containing fractional parts like 17.548. Such numbers are called real (or floating
point) constants. Further examples of real constants are:

28 } Programming in ANSI C
0.0083 —0.75 435.36 +247.0

These numbers are shown in decimal notation, having a whole number followed by a
decimal point and the fractional part. It is possible to omit digits before the decimal point, or
digits after the decimal point. That is,

edd: Y =l D

are all valid real numbers.

A real number may also be expressed in exponential (or scientific) notation. For example,
the value 215.65 may be written as 2.1565e2 in exponential notation. e2 means multiply by
10°. The general form is:

! =Mﬂ.ﬁ$ﬂ. e exponent .

The mantissa is either a real number expressed in decimal notation or an integer. The expo-
nent is an integer number with an optional plus or minus sign. The letter e separating the
mantissa and the exponent can be written in either lowercase or uppercase. Since the expo-
nent causes the decimal point to “float”, this notation is said to represent a real number in
floating point form. Examples of legal floating-point constants are:

0.65e4 12e-2 1.5¢+5 3.1BE3 -1.2E-]

Embedded white space is not allowed.

Exponential notation is useful for representing numbers that are either very large or very
sma'l in magnitude. For example, 7500000000 may be written as 7.5E9 or 75E8. Similarly, -
0.000000368 is equivalent to —3.68E-7.

Floating-point constants are normally represented as double-precision gquantities. How-
ever, the suffixes f or F may be used to force Elngle-preclsmn and 1 or Li to extend double
precision further.

Some examples of valid and invalid numeric constants are given in Table 2.4.

Table 2.4 Examples of Numeric Constants

698354L Yes Represents long integer
25,000 - No Comma 15 not allowed
+5.0E3 : Yes {ANSI C supports unary plus)
3.5e-5 Yes

7.1e4 No No white space i1s permitted
-4 5e-2 Yes

ESE+2.S No Exponent must be an integer
$255 No $ symbol is not permitted
0X78 Yes Hexadecimal integer

Single Character Constants

A single character constant (or simply character constant) contains a single character en-
closed within a pair of single quote marks. Example of character constants are:

l51 EKI i.;'! [.|

Constants, Variables; and Data Types: . | 29

Note that the character constant ‘5" is not the same as the number 5. The last constant is

a blank space.
Character constants have integer values known as ASCII values. For example, the state-
ment
printf("%d", 'a'); -
would print the number 97, the ASCII value of the letter a. Similarly, the statement
printf("%c", '97"):
would output the letter ‘a’. ASCII values for all characters are given in Appendix II
Since each character constant represents an integer value, it is also possible to perform
arithmetic operations on character constants. They are discussed in Chapter 8.

String Constants

A string constant is a sequence of characters enclosed in double quotes. The characters may
be letters, numbers, special characters and blank space. Examples are:

“Hello!” "1987" “WELL DONE" “?...I" “5+3" “X"

Remember that a character constant (e.g., X’) is not equivalent to the single character
string constant (e.g., “X”). Further, a single character string constant does not have an .
equivalent integer value while a character constant has an integer value. Character strings
are often used in programs to build meaningful programs. Manipulation of character strings
are considered in detail in Chapter 8.

Backslash Character Constants

C supports some special backslash character constants that are used in output functions. For
example, the symbol ‘\n’ stands for newline character. A list of such backslash character
constants is given in Table 2.5. Note that each one of them represents one character, al-
though they consist of two characters. These characters combinations are known as escape
sequences.

Table 2.5 Backslash Character Constants

Constant Meaning
“a’ audible alert (bell)
‘b’ back space
' form feed
“‘n’ new line
“r’ carmage retum
““* honzontal tab
“Ww’ vertical tab
W single quote
% 7al double quote
7 question mark
5 backslash

W0’ null

a0 |

2.6/ VARIABLES

A variable is a data name that may be used to store a data value. Unlike constants that
remain unchanged during the execution of a program, a variable may take different values
at different times during execution. In Chapter 1, we used several variables. For instance,
we used the variable amount in Sample Program 3 to store the value of money at the end of

Programming hAﬂSl o)

each year (after adding the interest earned during that year).

A variable name can be chosen by the programmer in a meaningful way so as to reflect its

function or nature in the program. Some examples of such names are:

Average
height
Total
Counter_1

class_strength

As mentioned earlier, variable names may consist of letters, digits, and the underscore(_)

character, subject to the following conditions:

1. They must begin with a letter. Some systems permit underscore as the first character.
2. ANSI standard recognizes a length of 31 characters. However, length should not be
normally more than eight characters, since only the first eight characters are treated

as significant by many compilers. (In C99, at least 63 characters are significant.)
3. Uppercase and lowercase are significant. That is, the varible Total is not the same as

total or TOTAL.

4, It should not be a keyword.
5. White space is not allowed.
Some examples of valid variable names are:

John
Delhi
mark

Invalid examples include:
123

%o

Value T _raise
x1 ph_value
suml distance
(area)

26th

Further examples of variable names and their correctness are given in Table 2.6.

Table 2.6 Exomples of Variable Names
Variable name Valid ? Remark
First tag Valid
char Not valid char is a keyword
PriceS Not valid Dollar sign is illegal
group one Not valid Blank space is not permitted
average number Valid First eight characters are significant
int_type Valid Keyword may be part of a name

Constants, Variables, and Data Types i 31

If only the first eight characters are recognized by a compiler, then the twe names

average_height
average_weight

mean the same thing to the computer. Such names can be rewritten as

avg height and avg_weight
or

ht_average and wt_average
without changing their meanings.

2.7 DATA TYPES

C language is rich in its data types. Storage representations and machine instructions to
handle constants differ from machine to machine. The variety of data types available allow

the programmer to select the type appropriate to the needs of the application as well as the
machine.

ANSI C supports three classes of data types:
1. Primary (or fundamental) data types
2. Derived data types
3. User-defined data types

The primary data types and their extensions are discussed in this section. The user-de-
fined data types are defined in the next section while the derived data types such as arrays,
functions, structures and pointers are discussed as and when they are encountered.

All C compilers support five fundamental data types, namely integer (int), character
(char), floating point (float), double-precision floating point (double) and void. Many of
them also offer extended data types such as long int and long double. Various data types
and the terminology used to describe them are given in Fig. 2.4. The range of the basic four
types are given in Table 2.7. We discuss briefly each one of them in this section.

CE’!B adds three more data types, namely _Bool, _Gnmpiex,-:;n_d_ _-Imaginﬂry. hee_tht_
|_ Appendix "C99 Features”. |

e e e s e 0 == o]

32| ' Programming in ANSIC -

PRIMARY DATA TYPES

i Integral Type
‘ Integer Character . U
|
signed unsigned type char I
i_ | int unsigned int signed char :
i short int unsigned short int unsigned char | |
‘ '. long int unsigned long int '

Floating point Type

void

‘ float doubie Long double

Fig. 2.4 Primary data typesin C

Table 2.7 Size and Range of Basic Data Types on |6-bit Machines

T Daia E}-‘FE WP T - a -L,,:-.i- hrd - :."":-:t'_.":' r:-__J"iﬁ' RME-'E qu!ues "

char ~1281t0 127

int —32,768 to 32,767

float 3.4e-38 to 3.4et+e38

double 1.7e-308 to 1.7e+308
Integer Types

Integers are whole numbers with a range of values supported by a particular machine. Gen-
erally, integers occupy one word of storage, and since the word sizes of machines vary (typi-
cally, 16 or 32 bits) the size of an integer that can be stored depends on the computer. If we
use a 16 bit word length, the size of the integer value is limited to the range —32768 to +32767
(that is, —2'° to +2'°-1). A signed integer uses one bit for sign and 15 bits for the magnitude
of the number. Similarly, a 32 bit word length can store an integer ranging from -
2.147,483,648 to 2,147,483,647.

In order to provide some control over the range of numbers and storage space, C has three
classes of integer storage, namely short int, int, and long int, in both signed and un-
signed forms. ANSI C defines these types so that they can be organized from the smallest to
the -largest, as shown in Fig. 2.5. For example, short int represents fairly small integer
values and requires half the amount of storage as a regular int number uses. Unlike signed

Constants, Variables, and Data Types 33

integers, unsigned integers use all the bits for the magnitude of the number and are always

positive. Therefore, for a 16 bit machine, the range of unsigned integer numbers will be from
0 to 65,535.

short int [

int]

; long int i

= - = —

Fig. 2.5 Integer types

We declare long and unsigned integers to increase the range of values. The use of quali-
fier signed on integers is optional because the default declaration assumes a signed number.

Table 2.8 shows all the allowed combinations of basic types and qualifiers and their size and
range on a 16-bit machine.

C99 allows long long integer types. See the Appendix “C99 Features”.

Table 2.8 Size and Range of Data Types on a |6-bit Machine

Type - Size (bits) Range

char or signed char 8 -12810 127

unsigned char 8 0to 255

int or signed int 16 —32,768 t0 32,767
unsigned int 16 0 to 65535

short int or

signed short int 8 —12810 127

unsigned short int 8 0 to 255

long int or

signed long int 32 ~2,147 483,648 10 2,147 483,647
unsigned long int 32 0to 4,294,967,295

float 32 3.4E-38to 3.4E + 38
double 64 1.7E—-308to0 1.7E+ 308
long double 80 34E-493210 1.1E + 4932

Floating Point Types

Floating point (or real) numbers are stored in 32 bits (on all 16 bit and 32 bit machines), with
6 digits of precision. Floating point numbers are defined in C by the keyword float. When
the accuracy provided by a float number is not sufficient, the type double can be used to
define the number. A double data type number uses 64 bits giving a precision of 14 digits.
These are known as double precision numbers. Remember that double type represents the
same data type that float represents, but with a greater precision. To extend the precision
further, we may use long double which uses 80 bits. The relationship among floating types
is illustrated in Fig. 2.6.

Tk

[double
[lang double I
e T R T
Fig. 2.6 Floating-po

Void Types

The void type has no values. This is usually used to specify the type of functions. The type of
a function is said to be void when it does not return any value to the calling function. It can
also play the role of a generic type, meaning that it can represent any of the other standard

types.

Character Types

A single character can be defined as a character(char) type data. Characters are usually
stored in 8 bits (one byte) of internal storage. The qualifier signed or unsigned may be
explicitly applied to char. While unsigned chars have values between 0 and 255, signed
chars have values from —128 to 127.

2.8| DECLARATION OF VARIABLES

After designing suitable variable names, we must declare them to the compiler. Declaration
does two things:

1. It tells the compiler what the variable name is.

2. It specifies what type of data the variable will hold.
The declaration of variables must be done before they are used in the program.

Primary Type Declaration

A variable can be used to store a value of any data type. That is, the name has nothing to do
with its type. The syntax for declaring a variable is as follows:

dﬂtﬂ-type 'Irl,'l'z,n.-m :
vl, v2,vn are the names of variables. Variables are separated by commas. A declaration

statement must end with a semicolon. For example, valid declarations are:

int count;
int number, total;
double ratio;

int and double are the keywords to represent integer type and real type data values respec-
tively. Table 2.9 shows various data types and their keyword equivalents.

Constants, Variables, and Datl T'ypas

Table 2.9 Data Types and Their Keywords

Data type
Character
Unsigned character
Signed character
Signed integer
Signed short integer

Signed long integer

Unsigned integer
Unsigned short integer

Unsigned long integer

Floating point
Double-precision

floating point

Extended double-precision
floating point

" Keyword equivalent -

char

unsigned char
signed char

signed int (or int)
signed short int

{or short int or short)
signed long int

(or long int or long)
unsigned int (or unsigned)
unsigned short int
(or unsigned short)
unsigned long int
{or unsigned long)
float

double

long double

The program segment given in Fig. 2.7 illustrates declaration of variables. main() is the
beginning of the program. The opening brace { signals the execution of the program. Decla-
ration of variables is usually done immediately after the opening brace of the program. The
variables can also be declared outside (either before or after) the main function. The impor-
tance of place of declaration will be dealt in detail later while discussing functions.

Note: C99 permits declaration of variables at any point within a function or block, prior to their use.

% MATHL) /*ennannnns Program Name.....eeeesesnsnsnnsannas *f

; s e Declavation:siiscisiGamgmmss *
float Xy ¥i

14 int code;

A short int count;

i long int amount;

g double deviation;

4 unsigned n;

nd char C:

¥ SRR COMPUEALTON . + v sesnnrennesnnncnens */

; | T Program endS..........

LT
e

; Fr—
LAl LAl

Fig. 27 Decaration of varsbles

When an adjective (qualifier) short, long, or unsigned is used without a basic data type

specifier, C compilers treat the data type as an int. If we want to declare a character variable
as unsigned, then we must do so using both the terms like unsigned char.

Default values of Constants

Integer constants, by default, represent int type data. We can override this default
by specifying unsigned or long after the number (by appending U or L) as shown

below:
Literal Type Value
+ 111 int 111
222 int -222
456781 unsigned int 45,678
~56/789L long int -56,789
987654UL unsigned long int 9,887,654
Similarly, tloating point constants, by detault represent double type data. It we

want the resulting data type to be float or long double, we must append the letter f
or F to the number for float and letter | or L for long double as shown below:

Literal Type Value

0. double 0.0

0 double 0.0

12.0 double 12.0

1.234 double 234

-1.2f float -1.2
1.234567891 long double 1.23456789

User-Defined Type Declaration

C supports a feature known as “type definition” that allows users to define an identifier that
would represent an existing data type. The user-defined data type identifier can later be
used to declare variables . It takes the general form:

typedef type identifier;

Where type refers to an existing data type and “identifier” refers to the “new” name given to
the data type. The existing data type may belong to any class of type, including the user-
defined ones. Remember that the new type is ‘new’ only in name, but not the data type.

typedef cannot create a new type. Some examples of type definition are:
typedef int units;
typedef float marks;
Here, units symbolizes int and marks symbolizes float. They can be later used to declare
variables as follows:

units batchl, batch2;
marks namel[50], name2[50];

Constants, Variables, and Data Types E 37

batchl and batch2 are inclared as int variable and namel[50] and name2[50] are declared as
50 element floating point array variables. The main advantage of typedef is that we can
create meaningful data type names for increasing the readability of the program.

Another user-defined data type is enumerated data type provided by ANSI standard. It is
defined as follows:

- enum identifier {valuel, value2, ...-vﬁlﬂmﬂ';

The “identifier” is a user-defined enumerated data type which can be used to declare vari-
ables that can have one of the values enclosed within the braces (known as enumeration

constants). After this definition, we can declare variables to be of this ‘new’ type as below:
enum jdentifier v1, v2, ... vn:

The enumerated variables v1, v2, ... vn can only have one of the values valuel, value2, ...
valuen. The assignments of the following types are valid:

value3:
valuel;

vl
vh

n

An example:

enum day {Monday,Tuesday, ... Sunday};
enum day week st, week end;

week st = Monday;

week end = Friday;

if(week st == Tuesday)

week end = Saturday;

The compiler automatically assigns integer digits beginning with 0 to all the enumeration
constants. That is, the enumeration constant valuel is assigned 0, value2 is assigned 1, and
so on. However, the automatic assignments can be overridden by assigning values explicitly
to the enumeration constants. For example:

enum day {Monday = 1, Tuesday, ... Sunday};
Here, the constant Monday is assigned the value of 1. The remaining constants are as-
signed values that increase successively by 1.
The definition and declaration of enumerated variables can be combined in one statement.
Example:
enum day {Monday, ... Sunday} week st, week end;

2.9 DECLARATION OF STORAGE CLASS

Variables in C ean have not only data type but also storage class that provides information

about their location and visibility. The storage class decides the portion of the program
within which the variables are recognized. Consider the following example:

/* Example of storage classes */
int m;

main()

int i:
float balance;

%ﬂﬁétiﬂnl{};
functionl()
{

A
float sum;

L]

}

The variable m which has been declared before the main is called global variable. It can
be used in all the functions in the program. It need not be declared in other functions. A
global variable is also known as an external variable.

The variables i, balance and sum are called local variables because they are declared
inside a function. Local variables are visible and meaningful only inside the functions in
which they are declared. They are not known to other functions. Note that the variable i has
been declared in both the functions. Any change in the value of i in one function does not
affect its value in the other.

C provides a variety of storage class specifiers that can be used to declare explicitly the
scope and lifetime of variables. The concepts of scope and lifetime are important only in
multifunction and multiple file programs and therefore the storage classes are considered in
detail later when functions are discussed. For now, remember that there are four storage
class specifiers (auto, register, static, and extern) whose meanings are given in Table
2.10.

The storage class is another qualifier (like long or unsigned) that can be added to a
variable declaration as shown below:

auto int count;
register char ch;
static int x;
extern long total;

Static and external (extern) variables are automatically initialized to zero. Automatic
(auto) variables contain undefined values (known as ‘garbage’) unless they are initialized
explicitly.

Table 2.10 Storage Classes and Their Meaning

Storage class Meaning

auto Local variable known only to the function in which it'is declared. Default is auto.

static Local variable which exists and retains its value even after the control is transferred to
the calling function.

extern Global variable known to all functions in the file.

register Local variable which is stored in the register,

2.10] ASSIGNING VALUES TO VARIABLES

Variables are created for use in program statements such as,

Constants, Variables, and Data Types { 39

value = amount + inrate * amount;
while (year <= PERIOD)

{
iéé; = year + 1;

In the first statement, the numeric value stored in the variable inrate is multiplied by the
value stored in amount and the product is added to amount. The result is stored in the
variable value. This process is possible only if the variables amount and inrate have already
been given values. The variable value is called the target variable. While all the variables
are declared for their type, the variables that are used in expressions (on the right side of
equal (=) sign of a computational statement) must be assigned values before they are encoun-
tered in the program. Similarly, the variable year and the symbolic constant PERIOD in
the while statement must be assigned values before this statement is encountered.

Assignment Statement
Values can be assigned to variables using the assignment operator = as follows:

variable _name = cunstantﬁ '
We have already used such statements in Chapter 1. Further examples are:

initial _value = 0;
final value = 100;
balance = 75.84;
yes _JK U

C permits multiple assignments in one line. For example
initial value = 0; final value = 100;
are valid statements.
An assignment statement implies that the value of the variable on the left of the ‘equal
sign’ is set equal to the value of the quantity (or the expression) on the right. The statement

year = year + 1;

means that the ‘new value’ of year is equal to the ‘old value’ of year plus 1.

During assignment operation, C converts the type of value on the right-hand side to the
type on the left. This may involve truncation when real value is converted to an integer.

It is also possible to assign a value to a variable at the time the variable is declared. This
takes the following form:

data-type variable_name = constant;

Some examples are:;

int final _value 100;
char yes = 'x':

75.84;

double balance

40| Programming in ANSI C

The process of giving initial values to variables is called initialization. C permits the ini-
tialization of more than one variables in one statement using multiple assignment operators.
For example the statements

p
X

q
y

are valid. The first statement initializes the variables p, g, and s to zero while the second
initializes x, y, and z with MAX, Note that MAX is a symbolic constant defined at the begin-
ning.

Remember that external and static variables are initialized to zero by default. Automatic
variables that are not initialized explicitly will contain garbage.

s = 0;
z = MAX;

'qur'npla 2;%| Program in Fig. 2.8 shows typical declarations, assignments and values
stored in various types of variables.

The variables x and p have been declared as floating-point variables. Note that the way
the value of 1.234567890000 that we assigned to x is displayed under different output for-
mats. The value of x is displayed as 1.234567880630 under %.121f format, while the actual
value assigned is 1.234567890000. This is because the variable x has been declared as a float
that can store values only up to six decimal places.

The variable m that has been declared as int is not able to store the value 54321 correctly.
Instead, it contains some garbage. Since this program was run on a 16-bit machine, the
maximum value that an int variable can store is only 32767. However, the variable k (de-

clared as unsigned) has stored the value 54321 correctly. Similarly, the long int variable n
has stored the value 1234567890 correctly.

The value 9.87654321 assigned to y declared as double has been stored correctly but the
value is printed as 9.876543 under %If format. Note that unless specified otherwise, the
printf function will always display a float or double value to six decimal places. We will
discuss later the output formats for displaying numbers.

Program
main() '
{
G R BECEARRITONT: o snde i saviaya L1]
float X.p 3
double y,q ;
unsigned k ;
e R DECLARATIONS AND ASSIGNMENTS........cu.. i
int m = 54321 ;
long int n = 1234567890 ;
i T ASSIGNMENTS....oivviverennnnrnrsansnanas x4
x = 1.234567890000 ;
y = 9.87654321 ;
k = 54321 ;
p=gelh;
F WA PRINTING. i iinismerividintiosaseanseeiiie *J

Constants, Variables, and Data Types I 41

e printf("m = %d\n", m) ;
; printf("n = %1d\n", n) ;
printf("x = %.121f\n", x} :
printf("x = %f\n", x) 3
. printf("y = %.121f\n",y) ;
2 printf("y = %1f\n", y) ;
: printf("k = %u p = %f q = %.121f\n", k, p, q) 3
}
| Qutput
4 m = -11215
t n = 1234567890
x = 1.234567880630
x = 1.234568
y = 9,876543210000
: y = 9.8765413
h k = 54321 p = 1.000000 q = 1.000000000000

O e R e

Fig. 2.8 - Examples of assignments

Reading Data from Keyboard

Another way of giving values to variables is to input data through keyboard using the scanf
function. It is a general input function available in C and is very similar in concept to the
printf function. It works much like an INPUT statement in BASIC. The general format of
scanf is as follows:

scanf(“control string”, &variablel,&variable2,....);

The control string contains the format of data being received. The ampersand symbeol &

before each variable name is an operator that specifies the variable name’s address. We must

always use this operator, otherwise unexpected results may occur. Let us look at an exam-
le:

. scanf("%d", &number);

When this statement is encountered by the computer, the execution stops and waits for
the value of the variable number to be typed in. Since the control string “%d” specifies that
an integer value is to be read from the terminal, we have to type in the value in integer form.
Once the number is typed in and the ‘Return’ Key is pressed, the computer then proceeds to
the next statement. Thus, the use of scanf provides an interactive feature and makes the

program ‘user friendly’. The value is assigned to the variable number.,

Example 2.@ The program in Fig. 2.9 illustrates the use of scanf function,

The first executable statement in the program is a printf, requesting the user to enter an
integer number. This is known as “prompt message” and appears on the screen like

Enter an integer number
As soon as the user types in an integer number, the computer proceeds to compare the

42 * Programming in ANSI C

value with 100. If the value typed in is less than 100, then a message
Y our number is smaller than 100

is printed on the screen. Otherwise, the message
Y our number contains more than two digits
is printed. Outputs of the program run for two different inputs are also shown in Fig. 2.9,

Program
main()

{

int number;

printf("Enter an integer number\n"):
scanf ("%d", &number);

if (number < 100)
printf("Your number is smaller than 100\n\n");
else
printf("Your number contains more than two digits\n");

Output
Enter an integer number
54
Your number is smaller than 100
Enter an integer number
108

You

two digits

e T i T o O o o R Rl A R T oy

ig. 29 Use of scanf function for interactive computing
Some compilers permit the use of the ‘prompt message’ as a part of the control string in

scanf, like
scanf("Enter a number %d",&number);
We discuss more about seanf in Chapter 4.
In Fig. 2.9 we have used a decision statement if...else to decide whether the number is
less than 100, Decision statements are discussed in depth in Chapter 5.

-Example E.Q Sample program 3 discussed in Chapter 1 can be converted into a more
flexible interactive program using scanf as shown In Fig. 2.10.

In this case, computer requests the user to input the values of the amount to be invested,
interest rate and period of investment by printing a prompt message

Input amount, interest rate, and period

Constants, Variables, and Data Types =43

and then waits for input values. As soon as we finish entering the three values correspﬁnd—
ing to the

Program
main()
{
5 int year, period ;
i float amount, inrate, value ;

printf("Input amount, interest rate, and period\n\n") ;
scanf ("%f %f %d", &amount, &inrate, &period) ;

o printf({"\n") ;

% HENr-=. §

while(year <= period)
{ _
value = amount + inrate * amount ;
printf("%2d Rs %8.2f\n", year, value) ;
vy amount = value ;
year = year + 1 ;

Output
Input amount, interest rate, and period

.; 10000 0.14 5

1 Rs 11400.00
2 Rs 12996.00
3 Rs 14815.44
4 Rs 16889.60
5 Rs 19254.15

i
% Input amount, interest rate, and period
f 20000 0.12 7

Rs 22400.00
Rs 25088.00
Rs 28098.56
Rs 31470.39
Rs 35246.84
Rs 39476.46
Rs 44213.63

e

¥i

<Pl
-;'-;'nqmt.n.n-t.un:n-

T o .-..-r-\.d'v'-_-..ﬂ'l"‘l;"!l"l"'. R i] T T T e SRRy TRy o b R i s
e T T -lEI'.--.-'L"".r .l el .-JH#:T':-'-F'-:..-%:F-LJ". R e Ty B FRF r-."!_E": T P e i e % Y

Fig. 2:10 Interactive investment program

44 F Programming in ANSI C

three variables amount, inrate, and period, the computer begins to calculate the amount
at the end of each year, up to ‘period’ and produces output as shown in Fig. 2.10.

Note that the scanf function contains three variables. In such cases, care should be exer-
cised to see that the values entered match the order and type of the variables in the list. Any
mismatch might lead to unexpected results. The compiler may not detect such errors.

11| DEFINING SYMBOLIC CONSTANTS

We often use certain unique constants in a program. These constants may appear repeatedly
in a number of places in the program. One example of such a constant is 3.142, representing
the value of the mathematical constant “pi”. Another example is the total number of stu-
dents whose mark-sheets are analysed by a ‘test analysis program’. The number of students,
say 50, may be used for calculating the class total, class average, standard deviation, etc. We
face two problems in the subsequent use of such programs. These are

1. problem in modification of the program and
2. problem in understanding the program.

Modifiability

We may like to change the value of “pi” from 3.142 to 3.14159 to improve the accuracy of
calculations or the number 50 to 100 to process the test results of another class. In both the
cases, we will have to search throughout the program and explicitly change the value of the
constant wherever it has been used. If any value is left unchaﬂged the program may pro-
duce disastrous outputs.

Understandability

When a numeric value appears in a program, its use is not always clear, especially when the
same value means different things in different places. For example, the number 50 may
mean the number of students at one place and the ‘pass marks’ at another place of the same
program. We may forget what a certain number meant, when we read the program some
days later.

Assignment of such constants to a symbolic name frees us from these problems. For exam-
ple, we may use the name STRENGTH to define the number of students and PASS_MARK
to define the pass marks required in a subject. Constant values are assigned to these names
at the beginning of the program. Subsequent use of the names STRENGTH and
PASS MARK in the program has the effect of causing their defined values to be automati-
cally substituted at the appropriate points. A constant is defined as follows:

#define symhulic-n&‘me value of constant

Valid examples of constant definitions are:

#define STRENGTH 100
#define PASS MARK 50
#define MAX 700
#define PI 3.14159

Symbolic names are sometimes called constant identifiers. Since the symbolic names are
constants (not variables), they do not appear in declarations. The following rules apply to a
#define statement which define a symbolic constant:

ol

=

%

8.

Constants, Variables, and Data Types 45

Symbolic names have the same form as variable names. (Symbolic names are written
in CAPITALS to visually distinguish them from the normal variable names, which are
written in lowercase letters. This is only a convention, not a rule.)

No blank space between the pound sign “#' and the word define is permitted.

‘#’ must be the first character in the line.

A blank space is required between #define and symbolic name and between the sym-
bolic name and the constant.

#define statements must not end with a semicolon.

After definition, the symbolic name should not be assigned any other value within the
program by using an assignment statement. For example, STRENGTH = 200; is ille-
gal.

Symbolic names are NOT declared for data types. Its data type depends on the type of
constant.

#define statements may appear anywhere in the program but before it is referenced
in the program (the usual practice is to place them in the beginning of the program).

#define statement is a preprocessor compiler directive and is much more powerful than
what has been mentioned here. More advanced types of definitions will be discussed later.
Table 2.11 illustrates some invalid statements of #define.

Table 2.11 Examples of Invalid #define Statements

. Statement i sl Validity .. Remark 50 ahaderh
#define X=2.5 Invalid *=" gign is not allowed
define MAX 10 Invalid No white space between # and define
#define N 25; Invalid No semicolon at the end
#define N 5, M 10 Invalid A statement can define only one name.
#Define ARRAY 11 Invalid define should be in lowercase letters
#define PRICES 100 Invalid $ symbol is not permitted in name
2.12| DECLARING A VARIABLE AS CONSTANT

We may like the value of certain variables to remain constant during the execution of a
program. We can achieve this by declaring the variable with the qualifier const at the time
of initialization. Example:

const int class _size = 40;

const is a new data type qualifier defined by ANSI standard. This tells the compiler that the
value of the int variable class_size must not be modified by the program. However, it can be
used on the right_hand side of an assignment statement like any other variable.

2.13

DECLARING A VARIABLE AS VOLATILE

ANSI standard defines another gualifier volatile that could be used to tell explicitly the
compiler that a variable’s value may be changed at any time by some external sources (from
outside the program). For example:

volatile int date;

46 E Programming in ANSI C

The value of date may be altered by some external factors even if it does not appear on the
left-hand side of an assignment statement. When we declare a variable as volatile, the
compiler will examine the value of the variable each time it is encountered to see whether
any external alteration has changed the value.

Remember that the value of a variable declared as volatile can be modified by its own
program as well. If we wish that the value must not be modified by the program while it may
be altered by some other process, then we may declare the variable as both eonst and vola-
tile as shown below:

volatile const int location = 100;
C99 adds another qualifier called restrict. See the Appendix "C99 Features".

2.14| OVERFLOW AND UNDERFLOW OF DATA

Problem of data overflow occurs when the value of a variable is either too big or too small for
the data type to hold. The largest value that a variable can hold also depends on the ma-
chine. Since floating-point values are rounded off to the number of significant digits allowed
(or specified), an overflow normally results in the largest possible real value, whereas an
underflow results in zero.

Integers are always exact within the limits of the range of the integral data types used.
However, an overflow which is a serious problem may occur if the data type does not match
the value of the constant. C does not provide any warning or indication of integer overflow.

It simply gives incorrect results. (Overflow normally produces a negative number.) We
should therefore exercise a greater care to define correct data types for handling the input/
output values.

Just Remember

Do not use the underscore as the first character of identifiers (or variable
names) because many of the identifiers in the system library start with
underscore.

Use only 31 or less characters for identifiers. This helps ensure portability
of programs.

Do not use keywords or any system library names for identifiers,

Use meaningful and intelligent variable names.

Do not create variable names that differ only by one or two letters.

Each variable used must be declared for its type at the beginning of the
program or function.

All variables must be initialized before they are used in the program.
Integer constants, by default, assume int types. To make the numbers
long or unsigned, we must append the letters L. and U to them.
Floating point constants default to double. To make them to denote float
or long double, we must append the letters F or L to the numbers.

Do not use lowercase 1 for long as it is usually confused with the number 1.

B

B B BRR BRBRBR B

B B

> & RbRE

Constants, Variables, and Data Types ._ E#T

Use single quote for character constants and double quotes for string con-
stants.

A character is stored as an integer. It is therefore possible to perform arith-
metic operations on characters.

Do not combine declarations with executable statements,

A variable can be made constant either by using the preprocessor com-
mand #define at the beginning of the program or by declaring it with the
qualifier const at the time of initialization.

Do not use semicolon at the end of #define directive.

The character # should be in the first column.

Do not give any space between # and define.

C does not provide any warning or indication of overflow. It simply gives
incorrect results. Care should be exercised in defining correct data type.
A variable defined before the main function is available to all the functions
in the program.

A variable defined inside a function is local to that function and not avail-
able to other functions.

Case Studies

-

1. Calculation of Average of Numbers
A program to calculate the average of a set of N numbers is given in Fig. 2.11.

Program

#define N 10 /* SYMBOLIC CONSTANT */
main()
{
int count ; /* DECLARATION OF */
float sum, average, number ; /* VARIABLES */
SUm =0 ; /* INITIALIZATION */
count =0 ; /* OF VARIABLES */
while{ count < N)
{
scanf("%f", &number) ; 1
sum = sum + number » L
count = count + 1 ;
}
average = sum/N ;
printf("N = %d Sum = %f", N, sum);
printf(" Average = %f", average);
J
1

48 | Programming in ANSI C

N =10 Sum = 38.799999 Average = 3.880
TR D R S e SR AN ST EF MR ARG PR YRGS T

. “Fig. 2.11 Average of N numbers =

The variable number is declared as float and therefore it can take both integer and real
numbers. Since the symbolic constant N is assigned the value of 10 using the #define state-
ment, the program accepts ten values and calculates their sum using the while loop. The
variable count counts the number of values and as soon as it becomes 11, the while loop is
exited and then the average is calculated. i

Notice that the actual value of sum is 38.8 but the value displayed is 38.799999. In fact, the
actual value that is displayed is quite dependent on the computer system. Such an inaccuracy
is due to the way the floating point numbers are internally represented inside the computer.

2. Temperature Conversion Problem

The program presented in Fig. 2.12 converts the given temperature in fahrenheit to celsius
using the following conversion formula:

F-32
C=
1.8

Program
#define F_LOW 0 e *
#define F_MAX 250 /* SYMBOLIC CONSTANTS L
#define STEP 25 i —— *

main()

f

typedef float REAL ; /* TYPE DEFINITION */

REAL fahrenheit, celsius ; /* DECLARATION */

fahrenheit = F_LOW ; /* INITIALIZATION */
printf("Fahrenheit Celsius\n\n") ;
while(fahrenheit <= F MAX)
{
celsius = (fahrenheit - 32.0) / 1.8 ;
printf(" %5.1f %7.2f\n", fahrenheit, celsius);

;
- '\-]
i
i3
it
_I'

:
1

Constaits, Variables, and Data Types | 49

fahrenheit = fahrenheit + STEP ;

}
}
Output
Fahrenheit Celsius
0.0 -17.78
25.0 -3.89
50.0 10.00
75.0 23.89
100.0 37.78
125.0 51.67
150.0 65.56
175.0 79.44
200.0 93.33
225.0 107.22

250.0 121.11
R T T T T R R R

Fig. 212" ﬁm#\!i"rﬂ'tﬂm ‘conversion— fahrenheit-celsius t LR

T L By |
-

The program prints a conversion table for reading temperature in celsius, given the
fahrenheit values. The minimum and maximum values and step size are defined as symbolic

constants.

These values can be changed by redefining the #define statements. An user-

defined data type name REAL is used to declare the variables fahrenheit and celsius.
The formation specifications %5.1f and %7.2 in the second printf statement produces two-
column output as shown.

.avlaw Questions

2.1 State whether the following statements are frue or false.

(a)
(b)
(c)
(d)
(e)
(£)
(g)
(h)
(i)
)

(k)
()

Any valid printable ASCII character can be used in an identifier.
All variables must be given a type when they are declared.
Declarations can appear anywhere in a program.

ANSI C treats the variables name and Name to be same.

The underscore can be used anywhere in an identifier.

The keyword void is a data type in C.

Floating point constants, by default, denote float type values.
Like variables, constants have a type.

Character constants are coded using double quotes.
Initialization is the process of assigning a value to a variable at the time of decla-
ration.

All static variables are automatically initialized to zero.

The scanf function can be used to read only one value at a time.

2.2 Fill in the blanks with appropriate words.

50 } Programming in ANSI C

(a) The keyword can be used to create a data type identifier.

(b) is the largest value that an unsigned short int type variable can store.
(e) A global variable is also known as variable.
(d) A variable can be made constant by declaring it with the qualifier at the

time of initialization.
2.3 What are trigraph characters? How are they useful?
2.4 Describe the four basic data types. How could we extend the range of values they
represent?
2.5 What is an unsigned integer constant? What is the significance of declaring a constant
unsigned?
2.6 Describe the characteristics and purpose of escape sequence characters.
2.7 What is a variable and what is meant by the “value” of a variable?
2.8 How do variables and symbolic names differ?
2.9 State the differences between the declaration of a variable and the definition of a
symbolic name.
2.10 What is initialization? Why is it important?
2.11 What are the qualifiers that an int can have at a time?
2.12 A programmer would like to use the word DPR to declare all the double-precision
floating point values in his program. How could he achieve this?
2.13 What are enumeration variables? How are they declared? What is the advantage of
using them in a program?
2.14 Describe the purpose of the qualifiers const and volatile.
2.15 When dealing with very small or very large numbers, what steps would you take to
improve the accuracy of the calculations?

2.16 Which of the following are invalid constants and why?

0.0001 Bx 1.5 99999
+100 75.45 E-2 *15.756"
—45.6 ~1.79e +4 0.00001234
2.17 Which of the following are invalid variable names and why?
Minimum First.name nl+n2 &name
doubles 3rd_row n$ Rowl
float Sum Total Row Total Column-total
2.18 Find errors, if any, in the following declaration statements.
Int x3
float letter,DIGIT;
double = p,q

exponent alpha,beta;
m,n,z: INTEGER
short char c;
long int m; count;
long float temp;
2.19 What would be the value of x after execution of the following statements?
int x, y = 10;
char z = 'a’';
=¥ v
2.20 Identify syntax errors in the following program. After corrections, what output would
you expect when you execute 1t?

Constants, Variables, and Data Types I 91

#define PI 3.14159

main()
{
int R,C; /* R-Radius of circle
float perimeter; /* Circumference of circle */
float area; /* Area of circle */
C =PI
R = 5
Perimeter = 2.0 * C *R;
Area = C*R*R;

printf("%f", "%d",&perimeter,&area)
)

.rugramming Exercises o

2.1

2.2

2.3
2.4

2.5

2.6

2.7

2.8

2.9
2.10

Write a program to determine and print the sum of the following harmonic series for a
given value of n:

1+ 1/2 +1/3 4+....+ 1/n

The value of n should be given interactively through the terminal.

Write a program to read the price of an item in decimal form (like 15.95) and print the
output in paise (like 1595 paise).

Write a program that prints the even numbers from 1 to 100.

Write a program that requests two float type numbers from the user and then divides
the first number by the second and display the result along with the numbers.

The price of one kg of rice is Rs. 16.75 and one kg of sugar is Rs. 15. Write a program
to get these values from the user and display the prices as follows:

+ LIST OF ITEMS **#

Item Price
Rice Rs 16.75
Sugar Rs 15.00

Write program to count and print the number of negative and positive numbers in a
given set of numbers. Test vour program with a suitable set of numbers. Use scanf to
read the numbers. Reading should be terminated when the value 0 is encountered.
Write a program to do the following:

(a) Declare x and v as integer variables and z as a short integer variable.

(b) Assign two 6 digit numbers to x and v

(c) Assign the sum of x and v to z

(d) Output the values of x, y and z
Comment on the output.
Write a program to read two floating point numbers using a scanf statement, assign
their sum to an integer variable and then output the values of all the three variables.
Write a program to illustrate the use of typedef declaration in a program.
Write a program to illustrate the use of symbolic constants in a real-life application.

Operators and
Expressions

3.1 INTRODUCTION

C supports a rich set of built-in operators. We have already used several of them, such as =,
+, —, ¥, & and <. An operator is a symbol that tells the computer to perform certain math-
ematical or logical manipulations. Operators are used in programs to manipulate data and
variables. They usually form a part of the mathematical or logical expressions.

C operators can be classified into a number of categories. They include:
Arithmetic operators
Relational operators
Logical operators
Assignment operators
Increment and decrement operators
Conditional operators
Bitwise operators
. opecial operators

An expression is a sequence of operands and operators that reduces to a single value. For

example,

SOl G v g B9 b

10 + 15
is an expression whose value is 25. The value can be any type other than veid.

3.2) ARITHMETIC OPERATORS

C prni.rin:ies all the basic arithmetic operators. They are listed in Table 3.1. The operators +, -
, *, and / all work the same way as they do in other languages. These can operate on any
built-in data type allowed in C. The unary minus operator, in effect, multiplies its single
operand by —1. Therefore, a number preceded by a minus sign changes its sign.

Operators and Expressions E 53

Table 3.1 Arithmetic Operators

Operator _ Meaning

o4 Addition or unary plus

- Subtraction or unary minus
Multiplication

/ Division

% Modulo division

Integer division truncates any fractional part. The modulo division operation produces
the remainder of an integer division. Examples of use of arithmetic operators are:

a-b a+b
a*bh a/b
a%b -a*b

Here a and b are variables and are known as operands. The modulo division operator %
cannot be used on floating point data. Note that C does not have an operator for
exponentiation. Older versions of C does not support unary plus but ANSI C supports it.

Integer Arithmetic

When both the operands in a single arithmetic expression such as a+b are integers, the
expression is called an integer expression, and the operation is called integer arithmetic.
Integer arithmetic always yields an integer value. The largest integer value depends on the

machine, as pointed out earlier. In the above examples, if a and b are integers, then for a =
14 and b = 4 we have the following results:

a-b = 10

a+b = 18

a*h = b6

a/b = 3 (decimal part truncated)
a%b = 2 (remainder of division)

During integer division, if both the operands are of the same sign, the result is truncated
towards zero. If one of them is negative, the direction of trunction is implementation
dependent. That is,

6/7=0and -6/-7=10

but —6/7 may be zero or —1. (Machine dependent)

Similarly, during modulo division, the sign of the result is always the sign of the first
operand (the dividend). That is

-14%3 = -2
-14% -3 = -2
14%-3 = 2

Example 3.1] The program in Fig. 3.1 shows the use of integer arithmetic to convert a
given number of days info months and days.

54 | Programming in ANSI C

Program
main ()

{

int months, days ;

printf("Enter days\n") ;
scanf("%d", &days) ;

months = days / 30 ;

days = days % 30 ;

printf("Months = %d Days = %d", months, days) ;
}

Output
Enter days
265
Months = 8 Days = 25
Enter days
364
Months = 12 Days = 4
Enter days
45
Months = 1 Days = 15

r ol "--'-,‘-.-:h-_-"-;f'{i'—.'-ll-n;-:?' Fade A '.5*::;‘:-.-'.5;!@'-:_'. e o
Fig. 3.1 lllustration of integer arithmetic

The variables months and days are declared as integers. Therefore, the statement
months = days/30;
truncates the decimal part and assigns the integer part to months. Similarly, the statement
days = days%30;
assigns the remainder part of the division to days. Thus the given number of days is
converted into an equivalent number of months and days and the result is printed as shown
in the output.

Real Arithmetic

An arithmetic operation involving only real operands is called real arithmetic, A real operand
may assume values either in decimal or exponential notation. Since floating point values are
rounded to the number of significant digits permissible, the final value is an approximation
of the correct result. If x, y, and z are floats, then we will have;

x = 6.0/7.0 = 0.857143

y = 1.0/3.0 = 0.333333

z ==2.0/3.0 = -0.666667
The operator % cannot be used with real operands.

Operators and Expressions | 95
Mixed-mode Arithmetic

When one of the operands is real and the other is integer, the expression is called a mixed-
mode arithmetic expression. If either operand is of the real type, then only the real operation
is performed and the result is always a real number. Thus

15/10.L0=1.5
whereas

15/10=1

More about mixed operations will be discussed later when we deal with the evaluation of
expressions.

3.3 RELATIONAL OPERATORS

We often compare two quantities and depending on their relation, take certain decisions. For
example, we may compare the age of two persons, or the price of two items, and so on. These
comparisons can be done with the help of relational operators. We have already used the
symbol ‘<‘, meaning ‘less than’. An expression such as

a<borl<20

containing a relational operator is termed as a relational expression. The value of a relational
expression is either one or zero. It is one if the specified relation is true and zero if the
relation is false. For example

10 < 20 is true
but
20 <10 is false

C supports six relational operators in all. These operators and their meanings are shown
in Table 3.2.

Table 3.2 Relational Operators

Operator Meaning

< is less than

oZzt 15 less than or equal to

= 15 greater than

>= 15 greater than or equal to
== 1s equal to

o is not equal to

A simple relational expression contains only one relational operator and takes the
following form:

56 | Programming in ANSI C -
ae-1 and ae-2 are arithmetic expressions, which may be simple constants, variables or

combination of them. Given below are some examples of simple relational expressions and
their values:

4.5 <= 10 TRUE
4.5 <-10 FALSE
—35 >= 0 FALSE
10 < 7+5 TRUE

a+b = c+d TRUE only if the sum of values of a and b is equal to the sum of values of
¢ and d.

When arithmetic expressions are used on either side of a relational operator, the
arithmetic expressions will be evaluated first and then the results compared. That is,
arithmetic operators have a higher priority over relational operators.

Relational expressions are used in decision statements such as if and while to decide the
course of action of a running program. We have already used the while statement in Chapter
1. Decision statements are discussed in detail in Chapters 5 and 6.

Relational Operator Complements

Among the six relational operators, each one is a complement of another operator.

- is complement of <=
is complement of >
= is complement of |=

A

We can simplify an expression involving the not and the less than operators
using the complements as shown below:

Actual one Simplified one
{x<vy) X ==y

(x> y) X <=y
[(x!=1y) X == Y

[{X < =Y¥) X > ¥

(x> =Y) X < Y

l(x == y) X |=y

Operators and Expressions | 57

3.4| LOGICAL OPERATORS

In addition to the relational operators, C has the following three logical operators.
&& meaning logical AND
|| meaning logical OR
! meaning logical NOT

The logical operators && and | | are used when we want to test more than one condition
and make decisions. An example is:

a>bé&i&x=10

An expression of this kind, which combines two or more relational expressions, is termed
as a logical expression or a compound relational expression. Like the simple relational
expressions, a logical expression also yields a value of one or zero, according to the truth
table shown in Table 3.3. The logical expression given above is true only if a > b is true and
x == 10 1is true. If either (or both) of them are false, the expression is false.

Table 3.3 Truth Table

Value of the expression

op-1 op-2 o . N e

op-1 && op-2 op-11l op-2
MNon-zero Non-zero 1 1
MNon-zero 0 0 1
0 MNon-zero 0 1
0 0 0 0

Some examples of the usage of logical expressions are:
1. if (age > 55 && salary < 1000)
2. if (number < 0 | | number > 100)
We shall see more of them when we discuss decision statements.
NOTE: Relative precedence of the relational and logical operators is as follows:

Highest !
> == o =

L&
Lowest |

It is important to remember this when we use these operators in compound expressions.

3.5 ASSIGNMENT OPERATORS

Assignment operators are used to assign the result of an expression to a variable, We have

seen the usual assignment operator, ‘=". In addition, C has a set of ‘shorthand’ assignment
operators of the form

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Operators and Expressions i 59

Example 3.‘.:.J Program of Fig. 3.2 prints a sequence of squares of numbers. Note the
use of the shorthand operator *= .

The program attempts to print a sequence of squares of numbers starting from 2. The state-
ment

a *= a:
which is identical to
a = a*a;
replaces the current value of a by its square. When the value of a becomes equal or greater

than N (=100) the while is terminated. Note that the output contains only three values 2, 4
and 16.

Program l
i #¢define N 100
T #define A . 2
: main()
:.‘ {
¥ int a;
a = A;
e while(a < N)
. {
. printf("%d\n", a);
a *=a;
i }
}
G Output
: 9
5’ 16

Fig. 3.2 Use of shorthand operator *=

3.6/ INCREMENT AND DECREMENT OPERATORS

C allows two very useful operators not generally found in other languages. These are the
increment and decrement operators:

++ and - -

The operator ++ adds 1 to the operand, while — — subtracts 1. Both are unary operators and
takes the following form:

60 | Programming in ANSI C

+HN; Oor me+g

++m; is equivalent to m
—=m; is equivalent to m

mtl; (or m += 1;)
m=1: (or m —= 1;)

i

We use the increment and decrement statements in for and while loops extensively.
While ++m and m++ mean the same thing when they form statements independently,
they behave differently when they are used in expressions on the right-hand side of an
assignment statement. Consider the following:
m= 5;
y = ++m;
In this case, the value of v and m would be 6. Suppose, if we rewrite the above statements
as
m=5;
y = mt;
then, the value of ¥y would be 5 and m would be 6. A prefix operator first adds 1 to the operand
and then the result is assigned to the variable on left. On the other hand, a postfix operator
first assigns the value to the variable on left and then increments the operand.
Similar is the case, when we use ++ (or — =) in subscripted variables. That is, the statement
a[i++] = 10;
is equivalent to
af[i] = 10;
i=1+l;
The increment and decrement operators can be used in complex statements. Example:
m = n++ =j+10;
Old value of n is used in evaluating the expression. n is incremented after the evaluation.
Some compilers require a space on either side of n++ or ++n.

Rules for + + and —~ - Operators

e Increment and decrement operators are unary operators and they require
variable as their operands.

e When postfix ++ (or —=) is used with a variable in an expression, the
expression is evaluated first using the original value of the variable and then
the variable is incremented (or decremented) by one.

o When prefix + + (or — =) is used in an expression, the variable is incremented
lor decremented) first and then the expression is evaluated using the new
value of the variable,

» The precedence and associatively of + + and — — operators are the same as
those of unary + and unary —.

Operators and Expressions IE‘I

3.7 CONDITIONAL OPERATOR

A ternary operator pair “? :” is available in C to construct conditional expressiun:s of the form
expl ? exp2 : exp3

where expl, exp2, and exp3 are expressions.

The operator 7 : works as follows: expl is evaluated first. If it is nonzero (true), then the
expression exp2 is evaluated and becomes the value of the expression. If expl is false, exp3 is
evaluated and its value becomes the value of the expression. Note that only one of the
expressions (either exp2 or exp3) is evaluated. For example, consider the following
statements.

a = 10;
b = 15;
Xx=(a>b) ?a:b:

In this example, x will be assigned the value of b. This can be achieved using the if..else
statements as follows:

if (a > b)
X = a3
else
X = b;

3.8) BITWISE OPERATORS

C has a distinction of supporting special operators known as bitwise operators for manipula-
tion of data at bit level. These operators are used for testing the bits, or shifting them right
or left. Bitwise operators may not be applied to float or double. Table 3.5 lists the bitwise
operators and their meanings. They are discussed in detail in Appendix I.

Table 3.5 Bitwise Operators

Operator 1 Meaning
& bitwise AND
| bitwise OR
- bitwise exclusive OR
<< shift left
> shift right

3.9 SPECIAL OPERATORS

C supports some special operators of interest such as comma operator, sizeof operator,
pointer operators (& and *) and member selection operators (. and —>). The comma and
sizeof operators are discussed in this section while the pointer operators are discussed in

62 l Programming in ANSI C

Chapter 11. Member selection operators which are used to select members of a structure are
discussed in Chapters 10 and 11. ANSI committee has introduced two preprocessor operators
known as “string-izing” and “token-pasting” operators (# and ##). They will be discussed in
Chapter 14.

The Comma Operator

The comma operator can be used to link the related expressions together. A comma-linked
list of expressions are evaluated left to right and the value of right-most expression is the
value of the combined expression. For example, the statement

value = (x = 10, y = 5, x+y);

first assigns the value 10 to x, then assigns 5 to y, and finally assigns 15 (i.e. 10 + 5) to value.
Since comma operator has the lowest precedence of all operators, the parentheses are
necessary. Some applications of comma operator are:

In for loops:

for {(n =1, m= 10, n <=m; n++, mt+)
In while loops:
while (¢ = getchar(), ¢ != '10')
Exchanging values:
t=x%x, x=y,y=1t;

The sizeof Operator

The sizeof is a compile time operator and, when used with an operand, it returns the number
of bytes the operand occupies. The operand may be a variable, a constant or a data type
gualifier.
Examples: m = sizeof (sum);
n = sizeof (long int),
k = sizeof (235L);
The sizeof operator is normally used to determine the lengths of arrays and structures

when their sizes are not known to the programmer. It is also used to allocate memory space
dynamically to variables during execution of a program.

Example 3.§J In Fig. 3.3, the program employs different kinds of operators. The results
of their evaluation are also shown for comparison.

Notice the way the increment operator ++ works when used in an expression. In the state-
ment

c = ++ta - b;
new value of a (= 16) is used thus giving the value 6 to ¢. That is, a is incremented by 1 before
it is used in the expression. However, in the statement

d = b++ + a;
the old value of b (=10) is used in the expression. Here, b is incremented by 1 after it is used
in the expression.

Operators and Expressions I 63

We can print the character % by placing it immediately after another % character in the
control string. This is illustrated by the statement
printf("a%%bh = %d\n", a%b);
The program also illustrates that the expression
c*xd 7 E=D
assumes the value 0 when c is less than d and 1 when c is greater than d.

Program

main()

{
int a, b, c, d;
a = 15;
b = 103
C = ++a - b;
printf("a = %d b = %d ¢ = %d\n",a, b, c};
d = b++ +a;
printf("a = % b = 5d d = %d\n",a, b, d);
printf("a/b = %d\n", a/b);
printf("a%%b = %d\n", a%b);
printf("a *= b = %d\n", a*=b);
printf("&d\n", (c=d) 7 1 : 0);
printf("%d\n", (ced) ? 1 : 0);

|

Qutput

a=16b=10c =6

a=16b=11d = 26

a/b = 1

a%b = 5

a *= b = 176

0

1

|
v
I:i

- Fig. 3.3 Further illustration of arithmetic operators

3.10| ARITHMETIC EXPRESSIONS

An arithmetic expression.is a combination of variables, constants, and operators arranged as
per the syntax of the language. We have used a number of simple expressions in the examples
discussed so far. C can handle any complex mathematical expressions. Some of the examples
of C expressions are shown in Table 3.6. Remember that C does not have an operator for
exponentiation.

64 } Frngrunming.hmf.':
Table 3.6 Expressions

Algebraic expression” * ¢ 2. C expression
axb-c a*b-c¢c
(m+n) (xty) (m+n) * (x+y)
(EJ a*b'c

C
3x* +2x-+1 3*x*x+2%x+1
[i] +e x/y+c

J

[3.11] EVALUATION OF EXPRESSIONS

Expressions are evaluated using an assignment statement of the form:

smn,
ﬁ'._:_:a'.*-.-"i.r?--lp'ﬁ._ i _;h..-"*“ e

Variable is any valid C variable name. When the statement is encountered, the expression is
evaluated first and the result then replaces the previous value of the variable on the left-

hand side. All variables used in the expression must be assigned values before evaluation is
attempted. Examples of evaluation statements are

x=a*h - ¢c;
y=b/c*a;
z=a-b/c+d;
The blank space around an operator is optional and adds only to improve readability.

When these statements are used in a program, the variables a, b, ¢, and d must be defined
before they are used in the expressions.

Ex&ﬁpﬂe 3.4] The program in Fig. 3.4 illustrates the use of variables in expressions and
their evaluation.

Output of the program also illustrates the effect of presence of parentheses in expressions.
This is discussed in the next section.

Program

main()

{

Tloat a, By €, X ¥, Z:

Dpumtnrs._';gﬂd_ Expressions I 65

a = 9;
g h = 12
e =3
% X by Fowg * g o= Iy
y=a—b) (3+c)* 2 -1}
& z=a-(b/(3+¢c)*2)-1;
: printf("x = %f\n", x):
printf("y = %f\n", y);
: printf("z = %f\n", z);
- }
; Output
5
s x = 10.000000
f y = 7.000000
o z = 4.000000
B o R AT T G A R) A A P A T oy T T B T o ML R FPE T T £ &
Fig. 3.4 [llustrations of evaluation of expressions
3.12) PRECEDENCE OF ARITHMETIC OPERATORS

An arithmetic expression without parentheses will be evaluated from left to right using the
rules of precedence of operators. There are two distinet priority levels of arithmetic operators

m C:

High prionity * / %
Low priority + —

The basic evaluation procedure includes ‘two’ left-to-right passes through the expression.
During the first pass, the high priority operators (if any) are applied as they are encountered.
During the second pass, the low priority operators (if any) are applied as they are
encountered. Consider the following evaluation statement that has been used in the program
of Fig. 3.4.

x = a—b/3 + c*2-1

When a =9, b =12, and ¢ = 3, the statement becomes

X=9-12/3 + 3*2-1

and is evaluated as follows
First pass

Stepl: x = 9-4+3%*2-1
Step2: x = 9-4+6-1

66 } Programming in ﬁHSI_"C’- :

Second pass
Stepd: x = b+6-1
Stepd: x = 11-1
Step5: x = 10

These steps are illustrated in Fig. 3.5. The numbers inside parentheses refer to step num-
bers.

Fig. 3.5 Il]'uﬂrﬂﬁqh: of hr’gi;qr;hy of npgruﬁmis

However, the order of evaluation can be changed by introducing parentheses into an ex-
pression. Consider the same expression with parentheses as shown below:

9-12/(3+3)*(2-1)

Whenever parentheses are used, the expressions within parentheses assume highest pri-

ority. If two or more sets of parentheses appear one after another as shown above, the ex-
pression contained in the left-most set is evaluated first and the right-most in the last. Given
below are the new steps.

First pass
Stepl: 9-12/6 * (2-1)
Step2: 9-12/6 * 1
Second pass

Step3: 9-2* 1

Step4: 9-2
Third pass

Stepb: 7

This time, the procedure consists of three left-to-right passes. However, the number of
evaluation steps remains the same as 5 (i.e equal to the number of arithmetic operators).

- Operators and-Expressions |e7

Parentheses may be nested, and in such cases, evaluation of the expression will proceed
outward from the innermost set of parentheses. Just make sure that every opening
parenthesis has a matching closing parenthesis. For example

9-(12/(3+3)*2)-1=4

whereas
9—-((12/3)+3*2)-1==2
While parentheses allow us to change the order of priority, we may also use them to

improve understandability of the program. When in doubt, we can always add an extra pair
just to make sure that the priority assumed is the one we require.

Rules for Evaluation of Expression

First, parenthesized sub expression from left to right are evaluated.

o |f parentheses are nested, the evaluation begins with the innermost sub-expres-
sion.

The precedence rule is applied in determining the order of application of op-
erators in evaluating sub-expressions

* The associativity rule is applied when two or more operators of the same prec-
edence level appear in a sub-expression.

e Arithmetic expressions are evaluated from left to right using the rules of
precedence.

When parentheses are used, the expressions within parentheses assume highest
priority.

3.13| SOME COMPUTATIONAL PROBLEMS

When expressions include real values, then it is important to take necessary precautions to
guard against certain computational errors. We know that the computer gives approximate

values for real numbers and the errors due to such approximations may lead to serious
problems. For example, consider the following statements:

a = 1.0/3.0;
b= a* 3.0:
We know that (1.0/3.0) 3.0 is equal to 1. But there is no guarantee that the value of b
computed in a program will equal 1.
Another problem is division by zero. On most computers, any attempt to divide a number
by zero will result in abnormal termination of the program. In some cases such a division

may produce meaningless results. Care should be taken to test the denominator that is likely
to assume zero value and avoid any division by zero.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Operators and Expressions IT'!

The operator (float) converts the female number to floating point for the purpose of
evaluation of the expression. Then using the rule of automatic conversion, the division is
performed in floating point mode, thus retaining the fractional part of result.

Note that in no way does the operator (float) affect the value of the variable female
number. And also, the type of female number remains as int in the other parts of the
program.

The process of such a local conversion is known as explicit conversion or casting a value.
The general form of a cast is:

(tvype-name)expression

where type-name is one of the standard C data types. The expression may be a constant,
variable or an expression. Some examples of casts and their actions are shown in Table 3.7.

Table 3.7 Use of Casts

Example Action

x = (int) 7.5 7.5 is converted to integer by truncation.
a=(int) 21.3/(int)4.5 Evaluated as 21/4 and the result would be 5.
b = (double)sum/n Division is done in floating point mode.

v = ({int) (a+b) The result of a+b is converted to integer.

z = (int)a+b a 1s converted to integer and then added to b.
p = cos({double)x) Converts x to double before using it.

Casting can be used to round-off a given value. Consider the following statement:
x = (int) (y+0.5);

If y is 27.6, y+0.5 is 28.1 and on casting, the result becomes 28, the value that is
assigned to x. Of course, the expression, being cast is not changed.

LExumpla S.QJ Figure 3.8 shows a program using a cast to evaluate the equation

sum = 3(1/)
=l

Program

pain[}
i
fioat Sum ;
int Ny

sum = 0
fopl mo= 1 & 'na= 1) § ¥)

{

sum = sum + 1/(float)n ; ;
printf("%2d %6.4f\n", n, sum) ;

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Operators and Expressions I 75

4. C99 has added float and long double versions of these fuctions.
5. C99 has added many more mathematical functions.
6. See the Appendix "C99 Features" for details.
As pointed out earlier in Chapter 1, to use any of these functions in a program, we should

include the line:

include <math.h>

in the beginning of the program.

Just Remember

B BBRR B B RBR BRR B B

> BRR B B

Use decrement and increment operators carefully. Understand the differ-
ence between postfix and prefix operations before using them.

Add parentheses wherever you feel they would help to make the evalua-
tion order clear.

Be aware of side effects produced by some expressions.

Avoid any attempt to divide by zero. It is normally undefined. It will either
result in a fatal error or in incorrect results.

Do not forget a semicolon at the end of an expression.

Understand clearly the precedence of operators in an expression. Use pa-
rentheses, if necessary.

Associativity is applied when more than one operator of the same prece-
dence are used in an expression. Understand which operators associate
from right to left and which associate from left to right.

Do not use increment or decrement operators with any expression other
than a variable identifier.

It is illegal to apply modules operator % with anything other than integers.
Do not use a variable in an expression before it has been assigned a value.
Integer division always truncates the decimal part of the result. Use it
carefully. Use casting where necessary.

The result of an expression is converted to the type of the variable on the
left of the assignment before assigning the value to it. Be careful about the
loss of information during the conversion.

All mathematical functions implement double type parameters and return
double type values.

It is an error if any space appears between the two symbols of the opera-
tors ==, !=, <= and >=.

It is an error if the two symbols of the operators !=, <= and >= are reversed.
Use spaces on either side of binary operator to improve the readability of
the code.

Do not use increment and decrement operators to floating point variables.
Do not confuse the equality operator == with the assignment operator =.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

3.11

3.12
3.13

3.14

3.15

3.16

3.17

Operators and Expressions E 83

Write a program to read a four digit integer and print the sum of its digits.

Hint: Use / and % operators.

Write a program to print the size of various data types in C.

Given three values, write a program to read three values from keyboard and print out
the largest of them without using if statement.

Write a program to read two integer values m and n and to decide and print whether
m is a multiple of n.

Write a program to read three values using scanf statement and print the following
results:

(a) Sum of the values

(b) Average of the three values

(c) Largest of the three

(d) Smallest of the three

The cost of one type of mobile service is Rs. 250 plus Rs. 1.25 for each call made over
and above 100 calls. Write a program to read customer codes and calls made and print
the bill for each customer.
Write a program to print a table of sin and eos functions for the interval from 0 to 180
degrees in increments of 15 as shown below.

x (degrees) sin (x) cos(x)
g smas ke
1 v o

L -

3.18

Write a program to compute the values of square-roots and squares of the numbers 0
to 100 in steps 10 and print the output in a tabular form as shown below.

Number Square-root Square
0 0 0
100 10 10000

3.19

3.20

Write a program that determines whether a given integer is odd or even and displays
the number and description on the same line.
Write a program to illustrate the use of cast operator in a real life situation.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Managing Input and Output Operations ; 87

Example 4.2| The program of Fig. 4.2 requests the user to enter a character and dis-
plays a message on the screen telling the user whether the character is
an alphabet or digit, or any other special character.

This program receives a character from the keyboard and tests whether it is a letter or digit

and prints out a message accordingly. These tests are done with the help of the following
functions:

isalpha(character)
isdigit(character)

For example, isalpha assumes a value non-zero (TRUE) if the argument character contains
an alphabet; otherwise it assumes 0 (FALSE). Similar is the case with the function isdigit.

Program:

#include <stdio.h=>
#include <ctype.h>
main()

{
char character;

printf("Press any key\n");

character = getchar();
if (isalpha(character) = 0)/* Test for letter */
printf("The character is a letter.");
else
if (isdigit (character) > 0)/* Test for digit */
printf("The character is a digit.");
else
_ printf("The character is not alphanumeric.");

! Output
3 Press any key

h

The character is a letter.

Press any key
5
The character is a digit,

Press any key
*

The character is not alphanumeric.

Fig. 4.2 Program to test the character type

C supports many other similar functions, which are given in Table 4.1. These character
functions are contained in the file etype.h and therefore the statement

#include <=ctype.h>
must be included in the program.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Managing Input and Output Operations i 91

Example 4.{.] Various input formatting options for reading integers are experimented

in the program shown in Fig. 4.4.

Program

main()

{
int a,b,€,X,¥.2;
A
printf("Enter three integer numbers\n");
scanf("%d %*d %d",8a,&b,&c);
printf("%d %d %d \n\n",a,b,c);
printf("Enter two 4-digit numbers\n");
scanf({"%2d %4d",&x,&y);
printf("%d %d\n\n", X,y);

printf("Enter two integers\n");

scanf("%d %d", &a,&x);

printf("%d %d \n\n",a,x);

printf("Enter a nine digit number\n");
scanf("%3d %4d %3d",&p,&q,&r);

printf("%d %d %d ‘n\n",p,q.r);
printf("Enter two three digit numbers\n");
scanf("%d %d",&x,&y);

printf("%d %d",x,y):

5 Output
} Enter three integer numbers
1 23
1 3 -3577

Enter two 4-digit numbers
1 6789 4321
b7 B9

Enter two integers
44 66
4321 44
Enter a nine-digit number

123456789
66 1234 567
| Enter two three-digit numbers
123 456
89 1723

'Fig. 4.4 Reading integers using scanf

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Managing Input and Output Operations E 95

printf("Enter address\n");
scanf("%[a-z]", address):
printf("%-80s\n\n", address);

e ———

}
OQutput
Enter address |
new delhi 110002 |
new delhi E
7 Program-8
] main()

char address[80];

printf("Enter address\n");
scanf("%[*\n]", address);
printf("%-80s", address);

Qutput

Enter address
f New Delhi 110 002
f New Delhi 110 0Q2

T o T 15 1
AR BT

Fig. 4.7 lllustration of conversion specification%[] for 51-"‘1"-'3'5 e ..]

Reading Blank Spaces

We have earlier seen that %s specifier cannot be used to read strings with blank
spaces, But, this can be done with the help of %[| specification. Blank spaces may
be included within the brackets, thus enabling the scanf to read strings with spaces.

Remember that the [owercase and uppercase letters are distinct. See
Fig. 4.7.
Reading Mixed Data Types

It is possible to use one scanf statement to input a data line containing mixed mode data. In
such cases, care should be exercised to ensure that the input data items match the control
specifications in order and fype. When an attempt is made to read an item that does not
match the type expected, the seanf function does not read any further and immediately
returns the values read. The statement

scanf ("%d %c %f %s", &count, &code, &ratio, name);
will read the data

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

‘Managing Input alnr.l Output Operations I99

The printf statement provides certain features that can be effectively exploited to control
the alignment and spacing of print-outs on the terminals. The general form of printf state-
ment is:

printf("control string”, argl, arg2,, argn);

Control string consists of three types of items:

1. Characters that will be printed on the screen as they appear.
2. Format specifications that define the output format for display of each item.
3. Escape sequence characters such as \n, \t, and \b.

The control string indicates how many arguments follow and what their types are. The
arguments argl, arg2,, argn are the variables whose values are formatted and printed
according to the specifications of the control string. The arguments should match in number,
order and type with the format specifications.

A simple format specification has the following form:

% W.p type-specifier

where w is an integer number that specifies the total number of columns for the output value
and p is another integer number that specifies the number of digits to the right of the decimal
point (of a real number) or the number of characters to be printed from a string. Both w and
p are optional. Some examples of formatted printf statement are:

printf("Programming in C");
printf(" ");
printf("\n");
printf("%d", x);
printf("a = %f\n b = %f", a, b);
printf("sum = %d", 1234);
printf("\n\n");
printf never supplies a newline automatically and therefore multiple printf statements

may be used to build one line of output. A newline can be introduced by the help of a newline
character *\n’ as shown in some of the examples above.

Output of Integer Numbers

The format specification for printing an integer number is;

% w d

where w specifies the minimum field width for the output. However, if a number is greater
than the specified field width, it will be printed in full, overriding the minimum specification.
d specifies that the value to be printed is an integer. The number is written right-justified in
the given field width. Leading blanks will appear as necessary. The following examples
illustrate the output of the number 9876 under different formats:

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Managing Input and Output Operations I 103

Printing of a Single Character
A single character can be displayed in a desired position using the format:

Toewce
The character will be displayed right-justified in the field of w columns. We can make the
display left-justified by placing a minus sign before the integer w. The default value for wis 1.
Printing of Strings
The format specification for outputting strings is similar to that of real numbers. It is of the
form

Tow.ps

where w specifies the field width for display and p instructs that only the first p characters
of the string are to be displayed. The display is right-justified.

The following examples show the effect of variety of specifications in printing a string
“NEW DELHI 110001”, containing 16 characters (including blanks).

Specification Output

123 45 878 858§ 1 23 45 8 T8 ¥ 10
%8 NIE |W DIE|JL|H|I 111101001
%20s NI|E |W DIE({L|H]|I 1[11Q]1010 |1
%20.10s NI EIW DI E| L{H| I
%.58 NIE|W D
%-20.10s NIE |W DE{L |H]|I
Yods NIE |W D(E|L|H]I o IOk O

Example 4.11 J Printing of characters and strings is illustrated in Fig. 4.11.

Program
main()
{
char x = 'A';
char name[20] = "ANIL KUMAR GUPTA";

printf("OUTPUT OF CHARACTERS\n\n");
printf("%c\n%3c\n%5c\n", x,x,x);
printf("%3c\n%c\n", x,x);

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Managing Input and Output Operations I 107

Code ; Quantity PR A 1 B Rate(Rs)
F105 275 575.00
H220 107 99.95

1019 321 215.50
M315 59 725.00

It 1s required to prepare the inventory report table in the following format:

INVENTORY REPORT
Code : Quantity Rate ; ' Value
Total Value: e

The value of each item is given by the product of quantity and rate.
Program: The program given in Fig. 4.12 reads the data from the terminal and generates the
required output. The program uses subscripted variables which are discussed in Chapter 7.

Program
#define ITEMS 4
main()
{ /* BEGIN */
int 1, quantity[5];
float rate[5], value, total value;
char code[5][5];
: /* READING VALUES */
! i =13

while (i <= ITEMS)
{

printf("Enter code, quantity, and rate:");
scanf("%s %d %f", code[i], Bquantity[i],&rate[i]);

Ttz
}
o Printing of Table and Column Headings....... a7
printf("\n\n");
printf(" INVENTORY REPORT \n"):
printf("—-—————— e \n");
printf(" Code Quantity Rate Value \n");
printf{"————— o \n"}:
F i, R Preparation of Inventory Position.......... =)
total value = 0;
¥ = 1

while (i <= ITEMS)
{

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Managing Input and Output Operations l 111

(1) To print the data left-justified, we must use in the field specification.
(j) The specifier prints floating-point values in the scientific notation.

4.3 Distinguish between the following pairs:

(a) getchar and seanf functions.

(b) %s and %c specifications for reading.
(¢) %s and %[] specifications for reading.
(d) %g and %f specification for printing.
(e) %f and %e specifications for printing.

4.4 Write scanf statements to read the following data lists:

(a) 78 B 45 (b) 123 1.23 45A
(e} 15-10-2002 (d) 10 TRUE 20

4.5 State the outputs produced by the following printf statements.

(a) printf (“%ed%c%f", 10, ‘¥’, 1.23);

(b) printf (“%2d %c %4.21", 1234,, ¥, 1.23);

(c) printf (“Sed \t564.2f", 1234, 456);

(d) printf (“\"%08.20\™, 123.4);

(e) printf (“%d%d %d”, 10, 20);

For questions 4.6 to 4.10 assume that the following declarations have been made in the program:
int year, count;
float amount, price;
char code, city[10];
double root;
4.6 State errors, if any, in the following input statements.

(a) scanfl“%c%i%d”, city, &price, &year);
(b) scanfl*%s%d”, city, amount);

(¢) scanfl“%f, %d, &amount, &year);

(d) scanfl\n"%f", root);

(e) scanf{“%c %d %ld", *code, &count, Root);

4.7 What will be the values stored in the variables year and code when the data

1988, x
is keyed in as a response to the following statements:

(a) scanfl(*%ed %c”, &year, &code);
(b) scanf{*%c %d”, &year, &code);
(c) scanfi*%d %c”, &code, &year);

(d) scanfl“%s %c", &year, &code);
4.8 The variables count, price, and city have the following values;

count <———— 1275
price < —235.74
city < Cambridge

Show the exact output that the following output statements will produce:
(a) printfi*“%d %f”, count, price);

(b) printfl“%2d\n%f", count, price);

(e) printf{“%d %f”, price, count):

(d) printf("%10dxxxx%5.2f",count, price);

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Decision Making and Branching I 115

transfers the control to a particular statement. This point of program has two paths to fol-
low, one for the true condition and the other for the false condition as shown in Fig. 5.1.

Entry

Falsg

test expression
2

Fig. 5.1 Two-way branching

Some examples of decision making, using if statements are:

1. if (bank balance is zero)
borrow money

2. if (room is dark)
put on lights

3. if (codeis 1)
person is male

4. if (age is more than 55)
person is retired

The if statement may be implemented in different forms depending on the complexity of

conditions to be tested. The different forms are:

1. Simple if statement

2. if.....else statement

3. Nested if....else statement
4, else if ladder.

We shall discuss each one of them in the next few sections.

5.3| SIMPLE IF STATEMENT

The general form of a simple if statement is
if (test expression)

{
}

statement-x;
The ‘statement-block’ may be a single statement or a group of statements. If the fest ex-
pression is true, the statement-block will be executed; otherwise the statement-block will be
skipped and the execution will jump to the statement-x. Remember, when the condition is

statement-block;

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Decision Making and Branching | 119

Applying De Morgan'’s Rule

While designing decision statements, we often come across a situation where the
logical NOT operator is applied to a compound logical expression, like
I(x&&y | |!z). However, a positive logic is always easy to read and comprehend than

a negative logic. In such cases, we may apply what is known as De Morgan'’s rule to
make the total expression positive. This rule is as follows:

“Remove the parentheses by applying the NOT operator to every logical expres-
sion component, while complementing the relational operators”

That is,
x becomes !x
Ix becomes x
&& becomes | |
| | becomes &&

Examples:

x && y || 1z) becomes Ix || ly && z

lix <=0 || !condition) becomes x >0&& condition

5.4 THE IF....ELSE STATEMENT

The if...else statement is an extension of the simple if statement. The general form is

o I1f (test expression)

{

True-block statement(s)

False-block statement(s)

}

statement-x

i 0T ek 2, o R b

If the test expression is true, then the true-block statement(s), immediately following the if
statements are executed; otherwise, the false-block statement(s) are executed. In either case,
either true-block or false-block will be executed, not both. This is illustrated in Fig. 5.5. In
both the cases, the control is transferred subsequently to the statement-x.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Decision Making and Branching [123

——if {test condition-1)
{_ i (test condition-2);

{ statement -1;
}
else

e
statement -2;, ———

}

[statement -3; ——
}

statement -x; =

statement-1 will be evaluated; otherwise the statement-2 will be evaluated and then the
control is transferred to the statement-x.

L L

Ao .

condition 2
7

False -

" |

‘ statement-3 ' statement-2 \ statement-1 |
’ & :
, 1l
statement - x k
i
T

Next Statement l

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Decision Making and Branching I 127

grade = L] Fa..i'] L] ;
printf ("%s\n", grade);

Consider another example given below:

if (code == 1)
colour = "RED":
else if (code == 2)
colour = "GREEN";
else if (code == 3)
colour = "WHITE";
else
colour = "YELLOW":

Code numbers other than 1, 2 or 3 are considered to represent YELLOW colour. The same
results can be obtained by using nested if...else statements.

Fig, 5.9 Flow chart of else..if ladder

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Decision Making and Branching E 131

/lEni
switch ™

expression

™] | Expression = value-1_ block1

]

Expression = value-2 block?

i (no match) default default
= block:

Fig. 5,11 Selection process of the switch statement

The switeh statement can be used to grade the students as discussed in the last section.
This is illustrated below:

index = marks/10
switch (index)
{
case 10:
‘case 9:
case 8:
grade
break;
case 7:
case 6:
grade
break;
case 5:
grade

break;
case 4;

grade
break;
default:
grade
break;

"Honours";

L

"First Division";

"Second Division";

"Third Division":

I

"FE1T";

)
printf("%s\n", grade);

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Decision Making and Branching
MAXLOAN - loanZ : loan3);
printf("\n\n");

printf("Loan requested = %1d\n", loan3);
printf("Loan sanctioned = %1d\n", sancloan);

}
Qutput
Enter the values of previous two loans:
0 20000
Enter the value of new loan:
45000
Previous loans pending:
0 20000

Loan requested = 45000
Loan sanctioned = 30000
Enter the values of previous two loans:

1000 15000

Enter the value of new lopan:
25000

Previous loans pending:

1000 15000

Loan requested = 25000
Loan sanctioned = 0

printf("Previous loans pending:\n%ld %1d\n",loanl,loan2);

|135

Fig. 5.12 [ilustration of the conditional operator

The program uses the following variables:

loan3 - present loan amount requested
loan2 - previous loan amount pending
loanl - previous to previous loan pending

sum23 - sum of loan2 and loan3
sancloan - loan sanctioned
The rules for sanctioning new loan are:

1. loanl should be zero.
2. loan2 + loan3 should not be more than MAXLOAN.

Note the use of long int type to declare variables.

e ; -.I'. e Ak R T e e R .I::T'T]"l":"!::.-' = et b S e

Some Guidelines for Writing Multiway Selection
Statements

Complex multiway selection statements require special attention. The readers
should be able to understand the logic easily. Given below are some guidelines
that would help improve readability and facilitate maintenance.

. Avoid compound negative statements. Use positive statements wherever
possible.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Decision Making and Branching ! 139

Just Remember

Be aware of dangling else statements.

Be aware of any side effects in the control expression such as ifix++).
Use braces to encapsulate the statements in if and else clauses of an if....
else statement.

Check the use of =operator in place of the equal operator = =.

Do not give any spaces between the two symbols of relational operators =
=, I=! o= ﬂ.ﬂd =, -

Writing !=, >= and <= operators like =!, => and =< is an error.

Remember to use two ampersands (&&) and two bars (||) for logical
operators. Use of single operators will result in logical errors.

Do not forget to place parentheses for the if expression.

It is an error to place a semicolon after the if expression.

Do not use the equal operator to compare two floating-point values. They
are seldom exactly equal.

Do not forget to use a break statement when the cases in a switch
statement are exclusive.

Although it is optional, it is a good programming practice to use the default
clause in a switch statement.

It is an error to use a variable as the value in a case label of a switch
statement. (Only integral constants are allowed.)

Do not use the same constant in two case labels in a switch statement.
Avoid using operands that have side effects in a logical binary expression
such as (x——&&++y). The second operand may not be evaluated at all.
Try to use simple logical expressions.

B B3 B B B RBBR BR BRR BRBRR

Case Studies

1. Range of Numbers
Problem: A survey of the computer market shows that personal computers are sold at
varying costs by the vendors. The following is the list of costs (in hundreds) quoted by some
vendors:

35.00, 40.50, 25.00, 31.25, 68.15,

47.00, 26.65, 29.00 53.45, 62.50
Determine the average cost and the range of values.
Problem analysis: Range is one of the measures of dispersion used in statistical analysis of
a series of values. The range of any series is the difference between the highest and the
lowest values in the series. That is

Range = highest value — lowest value
It is therefore necessary to find the highest and the lowest values in the series.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Decision Making and Branching {143

goto stop;
}
house rent = 0.25 * basic;
gross = basic + house rent + perks;
if (gross <= 2000) -
incometax = 0 |
else if (gross <= 4000)
incometax = 0.03 * gross; [
else if (gross <= 5000) '
incometax = 0.05 * gross; |
else
incometax = 0.08 * gross;
net = gross - incometax;
printf("%d %d %.2f\n", level, jobnumber, net);
goto input;
stop: printf("\n\nEND OF THE PROGRAM");
}
Output

Enter level, job number, and basic pay
Enter 0 (zero) for Tevel to END

1 1111 4000
1 1111 5980.00

Enter level, job number, and basic pay
Enter 0 (zero) for level to END

2 2222 3000

2 2222 4465.00

Enter level, job number, and basic pay
Enter 0 (zero) for level to END

3 3333 2000

3 3333 3007.00

Enter level, job number, and basic pay
Enter 0 (zero) for level to END

4 4444 1000

4 4444 1500.00 |

Enter level, job number, and basic pay
Enter 0 (zero) for level to END |

0
END OF THE PROGRAM

Fig. 5.15 Pay-bill calculations

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Decision Making and Branching

5.13 What is the output of the following program?

main ()
{
intm=1;
if { m==1)
{
printf (* Delhi ") ;
if (m == 2)
printf("Chennai") :
else
printf("Bangalore")
}
else;

}

printf(" END");

5.14 What is the output of the following program?

main(

{

1

)

int m;
for (m = 1; m<5; m++)
printf{%d\n", (m%2) ? m : m*2);

5.156 What is the output of the following program?

main

{

}

5.16 What will be the value of x when the following segment is executed?

5.17 What will be the output when the following segment is executed?

int x
if (x

)

ImE m; Ne P

for {m=0; m < 3; m+)
for {n = 03 n<3:; n++)

for (p = 0; p < 3;; p++)
if{m+n+p==2)

goto print;

print :
printf("%d, %d, %d". m. n, p);:

int x = 10, vy = 15;
% = (x<y)? (y+x) : (y-x) ;

= [];
>= u}

(& 2 N T e 3

{147

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

0.11

2.12

2.13

5.14

9.15

Decision Making and Branching I 151

e e

Ml'bz—-fr'ac
2a

The program should request for the values of the constants a, b and ¢ and print the
values of x, and x,. Use the following rules:

(a) No solution, if both a and b are zero

(b) There is only one root, if a = 0 (x = —¢/b)

(¢) There are no real roots, if b>— 4 ac is negative

(d) Otherwise, there are two real roots
Test your program with appropriate data so that all logical paths are working as per
yvour design. Incorporate appropriate output messages.

Write a program to read three integer values from the keyboard and displays the
output stating that they are the sides of right-angled triangle.

An electricity board charges the following rates for the use of electricity:

For the first 200 units: 80 P per unit

For the next 100 units: 90 P per unit

Beyond 300 units: Rs 1.00 per unit
All users are charged a minimum of Rs. 100 as meter charge. If the total amount is
more than Rs. 400, then an additional surcharge of 15% of total amount is charged.
Write a program to read the names of users and number of units consumed and print
out the charges with names.

Write a program to compute and display the sum of all integers that are divisible by 6
but not divisible by 4 and lie between 0 and 100. The program should also count and
display the number of such values.

Write an interactive program that could read a positive integer number and decide
whether the number is a prime number and display the output accordingly.

Modify the program to count all the prime numbers that lie between 100 and 200.
NOTE: A prime number is a positive integer that is divisible only by 1 or by itself.
Write a program to read a double-type value x that represents angle in radians and a
character-type variable T that represents the type of trigonometric function and dis-
play the value of

(a) sin(x), if 8 or S is assigned to T,

(b) cos (x), if ¢ or C is assigned to T, and

(¢) tan (x), if t or T is assigned to T

using (1) if......else statement and (ii) switch statement.

xzz_h_

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Decision Making and Looping I 155

while (test condition)

{
.1 body of the loop i
| } o

Yot g i g ME i

The while is an entry-controlled loop statement. The test-condition is evaluated and if
the condition is true, then the body of the loop is executed. After execution of the body, the
test-condition is once again evaluated and if it is true, the body is executed once again.
This process of repeated execution of the body continues until the test-condition finally
becomes false and the control is transferred out of the loop. On exit, the program continues
with the statement immediately after the body of the loop.

The body of the loop may have one or more statements. The braces are needed only if the
body contains two or more statements. However, it is a good practice to use braces even if the
body has only one statement.

We can rewrite the program loop discussed in Section 6.1 as follows:

while(n <= 10)
{

loop sum = sum + n * n;

/* Initialization */
/* Testing */

/* Incrementing */

n = n+l;
|

printf("sum = %d\n", sum);

B BN YR BN AN A

= v R Y
c .I_ el o ok o """I-;J'-'J"‘-'L'.:':::'.. 3

The body of the loop is executed 10 times for n = 1, 2,, 10, each time adding the
square of the value of n, which is incremented inside the loop. The test condition may also
be written as n < 11; the result would be the same. This is a typical example of counter-
controlled loops. The variable n is called counter or control variable.

Another example of while statement, which uses the keyboard input is shown below:

character = ' ' :

while (character != 'Y')
character = getchar();

XXAXKXX S

First the charaecter is initialized to * ‘. The while statement then begins by testing
whether character is not equal to Y. Since the character was initialized to ‘ ‘, the test is

true and the loop statement

character = getchar();

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Decision Making and Looping I 167

nated as soon as the desired name is found. C permits a jump from one statement to another
within a loop as well as a jump out of a loop.

Jumping Out of a Loop

An early exiti from a loop can be accomplished by using the break statement or the goto
statement. We have already seen the use of the break in the switch statement and the goto
in the if...else construct. These statements can also be used within while, do, or for loops.
They are illustrated in Fig. 6.6 and Fig. 6.7.

When a break statement is encountered inside a loop, the loop is immediately exited and
the program continues with the statement immediately following the loop. When the loops
are nested, the break would only exit from the loop containing it. That is, the break will
exit only a single loop.

Since a goto statement can transfer the control to any place in a program, it is useful to
provide branching within a loop. Another important use of goto is to exit from deeply nested
loops when an error occurs. A simple break statement would not work here.

while [---------) do
{ {
if(condition) if(condition)
break; — break;
Exit Exit| e
from from
Toop } loop twhile (------);
(a) (b)
for (---------) for (---------)
{ { |
for (---------)
if(error) ' {
Exit hruk. if(condition)
from Exit | break;
lToop } from | } _________
e nonsneen inner
loop !—*
|
(c) (d)

Fig. 6.6 Exiting a loop with break statement

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Decision Making and Looping {171
» Repetition (looping) structure

While sequence and loop structures are sufficient to meet all the requirements of
programming, the selection structure proves to be more convenient in some situa-
tions.

The use of structured programming techniques helps ensure well-designed pro-
grams that are easier to write, read, debug and maintain compared to those that are
unstructured.

Structured programming discourages the implementation of unconditional branch-
ing using jump statements such as goto, break and continue. In its purest form,

structured programming is synonymous with “goto less programming".

Do not go to goto statement!

Skipping a Part of a Loop

During the loop operations, it may be necessary to skip a part of the body of the loop under
certain conditions. For example, in processing of applications for some job, we might like to
exclude the processing of data of applicants belonging to a certain category. On reading the
category code of an applicant, a test is made to see whether his application should be consid-
ered or not. If it is not to be considered, the part of the program loop that processes the
application details is skipped and the execution continues with the next loop operation.
Like the break statement, C supports another similar statement called the continue
statement. However, unlike the break which causes the loop to be terminated, the con-
tinue, as the name implies, causes the loop to be continued with the next iteration after
skipping any statements in between. The continue statement tells the compiler, “SKIP
THE FOLLOWING STATEMENTS AND CONTINUE WITH THE NEXT ITERATION". The

format of the continue statement is simply

continue;

The use of the continue statement in loops is illustrated in Fig. 6.10. In while and do
loops, continue causes the control to go directly to the test-condition and then to continue
the iteration process. In the case of for loop, the increment section of the loop is executed
before the test-condition is evaluated.

%l —while (test-condition) do

Bl @ ecssemsmes sssmssees

& if (cmmmmmme-) 1 (o)

i continue; continue;

f } — | while (test-condition);
] (a) (b)

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

1azf Programming in ANSI C-
1&’ Output o
: L
[#
| : Pisase
H Omcmeee -
i | [anmaia *
| . T -
§ Z | PR *
: ; B e
:. 0-*
5 -
' *
X *ee=0
; s
s B
: 5 ¥ oo 0
: S SESE— 0
? . T 0
1 .
: S
3 R 0
; g :
Fig. 6.15 Plotting of two functions
.ﬂvllw Questions e
6.1 State whether the following statements are ¢true or false.
(a) The do...while statement first executes the loop body and then evaluate the loop
control expression.
(b) In a pretest loop, if the body is executed n times, the test expression is executed
n + 1 times.
(¢) The number of times a control variable is updated always equals the number of
loop iterations.
(d) Both the pretest loops include initialization within the statement.
(e) In a for loop expression, the starting value of the control variable must be less
than its ending value.
(f) The initialization, test condition and increment parts may be missing in a for
statement.
(g) while loops can be used to replace for loops without any change in the body of the

loop.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

6.17

6.18

6.19

6.20

Decision Making and Looping I 189

Write a program to graph the function

y = sin (X)
in the interval 0 to 180 degrees in steps of 15 degrees. Use the concepts discussed in
the Case Study 4 in Chapter 6.

Write a program to print all integers that are not divisible by either 2 or 3 and lLie
between 1 and 100. Program should also account the number of such integers and
print the result.

Modify the program of Exercise 6.16 to print the character O instead of S at the center
of the square as shown below.

oo
ntewn

WU
Won U0 OO
g oln

i

(Given a set of 10 two-digit integers containing both positive and negative values, write
a program using for loop to compute the sum of all positive values and print the sum
and the number of values added. The program should use scanf to read the values
and terminate when the sum exceeds 999. Do not use goto statement.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Arrays I 193

The subseripts of an array can be integer constants, integer variables like 1, or expressions

that yield integers. C performs no bounds checking and, therefore, care should be exercised to
ensure that the array indices are within the declared [imits.

7.3| DECLARATION OF ONE-DIMENSIONAL ARRAYS

Like any other variable, arrays must be declared before they are used so that the compiler
can allocate space for them in memory. The general form of array declaration 1s

type variable-name/ size [;

The type specifies the type of element that will be contained in the array, such as int,
float, or char and the size indicates the maximum number of elements that can be stored
inside the array. For example,

float height[50]:

declares the height to be an array containing 50 real elements. Any subscripts 0 to 49 are
valid. Similarly,
int group[10];
declares the group as an array to contain a maximum of 10 integer constants. Remember:
* Any reference to the arrays outside the declared limits would not necessarily cause an

error. Rather, it might result in unpredictable program results.
¢ The size should be either a numeric constant or a symbolic constant.

The C language treats character strings simply as arrays of characters. The size in a
character string represents the maximum number of characters that the string can hold. For
instance,

char name[10];

declares the name as a character array (string) variable that can hold a maximum of 10
characters. Suppose we read the following string constant into the string variable name.

"WELL DONE”

Each character of the string is treated as an element of the array name and is stored in
the memory as follows:

'iw"
| ‘ET
iy |
;S

-
o
o
5
e

=

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

o T | 197
We can also use a read function such as scanf to initialize an array. For example, the
statements

int. x [3]:
scanf("%d%d%d", &x[0], &[1], &x[2]);

will initialize array elements with the values entered through the keyboard.

Example ?.ig Given below is the list of marks obtained by a class of 50 students in an
annual examination.

43 655127 79 11 56 61 8209 25 36 07 49 55 63 74 81 49 37

4049 167587 9133245878 655676 67 4554 36 63 12 21

73 49 51 19 39 49 68 93 B5 59

Write a program to count the number of students belonging to each of
following groups of marks: 0-9, 10-19, 20-29.......100.

The program coded in Fig. 7.2 uses the array group containing 11 elements, one for each
range of marks. Each element counts those values falling within the range of values it repre-
sents.

For any value, we can determine the correct group element by dividing the value by 10.
For example, consider the value 59. The integer division of 59 by 10 yields 5. This is the
element into which 59 is counted.

Program
f#define MAXVAL 50
#define COUNTER 11

main()
{
float value[MAXVAL];
int i, low, high;
int group[COUNTER] = {0,0,0,0,0,0,0,0,0,0,0};
P s A R R 4 READING AND COUNTING *f
for{ i =0 ; i < MAXVAL ; i++)
{
B s iow READING OF VALUES *
scanf("%f", &value[i]) ;
gRE ey COUNTING FREQUENCY OF GROUPS. ol

++ group[(int) (value[i]) / 10] ;

}
f*PRINTING OF FREQUENCY TABLE o
printf("\n");
printf(" GROUP RANGE FREQUENCY\n\n"} ;
for{ =03 9« COUNTER 2 i+¢+)
{

low = § * 10 :

if(i, == 10) 12

high = 100 ;

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

3
=Y girl_total[i

1=0

==:§: item_totallj]

j=0

|zn1

Program
#define MAXGIRLS 4
#define MAXITEMS 3

main()

{

int value[MAXGIRLS] [MAXITEMS];
int girl_total[MAXGIRLS] , item total[MAXITEMS];
int i, j, grand total;

i READING OF VALUES AND COMPUTING girl_total ...*/

printf("Input data\n");
printf("Enter values, one at a time, row-wise\n\n");

for(i = 0 ; 1 < MAXGIRLS ; i++)
{
girl total[i] = 0;
for(] =0 ; J < MAXITEMS : j++)

{
scanf("%d", &valuelil[il):
girl_total[i] = girl_total[i] + value[i][il;
}
}
...... CONPOTIHR FEEM -ERERAN o ovemy smmenmmmnanmasmmmg i o

for{ j = 0 ; j < MAXITEMS ; j++)
{
item total[j] = 0;
for(i =0 ; i < MAXGIRLS ; i++)
item total[j] = item total[j] + value[i][i];

..... COMPUTING grand total....ccssvesssssssrssscans™f

1,
grand total = 0;
for(1 =0 ; i < MAXGIRLS ; i++)
grand_total = grand_total + girl_total[i];

....... FEIRTING OF BESULTS onisscanbrissstsmmmiionaastl

printf("\n GIRLS TOTALS\n\n");

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

212[

Trip-3

During the first trip,

three pairs of items are compared and interchanged whenever
needed. It should be noted that the number 80, the largest among the items, has been moved
to the bottom at the end of the first trip. This means that the element 80 (the last item in the
new list) need not be considered any further. Therefore, trip-2 requires only two pairs to be
compared. This time, the number 65 (the second largest value) has been moved down the
list. Notice that each trip brings the smallest value 10 up by one level.

The number of steps required in a trip is reduced by one for each trip made. The entire
process will be over when a trip contains only one step. If the list contains n elements, then

the number of comparisons involved would be n(n-1)/2,

{

“ft

’f'*

Program
#define N 10
- main()

Wt 1,30
float median,a[N],t;
printf("Enter the number of items\n"):
scanf("%d", &n);
Reading items into array a */
printf("Input %d values \n",n);
for (i = 1; i <= n 3 i++)
scanf("%f", &a[il);
Sorting begins */
for (i =1 ; i <= n=1; i++)
{ /* Trip-i begins */
far (] =1 3 J <= m=1 ;5 Jt¢)
{
if (ali] <= a[j+1])
{ /* Interchanging values */
t = alils
alj] = a[j+1];
alj+1] = t;
}
else
continue ;

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Arrays

for{i=l; i<=4; i++)
for{j=1;]<=5; j++)
scanf("%d" ,BM[i] [J]);
printf (" Enter products sold week wise\n");
printf (" $11,512,—, $21,522,— etc\n");
for(i=1; i<=4; i++)
for(j=1; j<=5; j++)
scanf{"%d", 8S[il[jl):
printf(" Enter cost of each product\n");
for(j=1; j <=5; j++)
scanf("%d",&C[j]);
/*Value matrices of production and sales */
for{i=1; i<=4; i++)
for(j=1; j<=5; j++)
{
Mvalue[i]l[3]
Svalue[i][i]

M) (3] * C[i);
: s[illi] * clils

/*Total value of weekly production and sales */
for(i=1; i<=4; i++)
{
Mweek[i] = 0 ;
Sweek[i] = 0 ;
fﬂf‘{j=1; j<=5; j++]
{
Mweek[i] += Mvalue[i][i];
Sweek[i] += Svalue[i][il;
|
}

/*Monthly value of product_wise production and sales */
for(j=1; j<=5; j++)
{
Mproduct[j] = 0 ;
Sproduct[j] = 0 ;
for(i=1; i<=4; i++)
{
Mproduct[j] += Mvaluel[i][i];:
Sproduct[j] += Svalue[i][i]l:
}
}
/*Grand total of production and sales values */
Mtotal = Stotal = 0;
for(i=1; i<=4; i++)
{
Mtotal += Mweek[i];
Stotal += Sweek[i];

n u

Iz19

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Arrays l 223

Total production = 5260
Total sales = 4550

ENTER YOUR CHOICE:5

GOOD BYE

Exit from the program

Fig. 7.10 Program for production and sales analysis

@eview Questions

7.1 State whether the following statements are true or false.
(a} The type of all elements in an array must be the same.
(b) When an array is declared, C automatically initializes its elements to zero.
(c) An expression that evaluates to an integral value may be used as a subscript.
(d) Accessing an array outside its range is a compile time error.
(e) A char type variable cannot be used as a subscript in an array.
(f) An unsigned long int type can be used as a subscript in an array.
(g) In C, by default, the first subscript is zero.
(h) When initializing a multidimensional array, not specifying all its dimensions is
AN error.
(1) When we use expressions as a subscript, its result should be always greater than
ZET0.
{(j) In C, we can use a maximum of 4 dimensions for an array.
(k) In declaring an array, the array size can be a constant or variable or an expres-
S101.
(1) The declaration int x[2] = {1,2,3}; is illegal.
7.2 Fill in the blanks in the following statements.

(a) The variable used as a subscript in an array is popularly known as
variable.

(b} An array can be initialized either at compile time or at :

(c) An array created using malloc function at run time is referred to as

(d) An array that uses more than two subseript is referred to as array.

(e) is the process of arranging the elements of an array in order.

ATTAY.

7.3 Identify errors, if any, in each of the following array declaration statements, assuming
that ROW and COLUMN are declared as symbolic constants:

(a) int score (100);

(b) float values [10,15];

(c) float average[ROW], [COLUMN];
(d) char name[15];

(e) int sum[];

(f) double salary [i + ROW]

(g) long int number [ROW]

(h) int array x[COLUMN];

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

|
! 227

;5

7.8

1.9

Arrays

Write a program to read the data and determine the following:

(a) Total marks obtained by each student.

(b) The highest marks in each subject and the Roll No. of the student who secured it.
(c) The student who obtained the highest total marks.

Given are two one-dimensional arravs A and B which are sorted in ascending
order.Write a program to merge them into a single sorted array C that contains every
item from arrays A and B, in ascending order.

Two matrices that have the same number of rows and columns can be multiplied to
produce a third matrix. Consider the following two matrices.

all alz 11111 ﬂ-ln

By dgyy..eilyy
=

R e

h]! b]z rrrrr bln

by, bys.....by,
B=

[SEE .|

The product of A and B is a third matrix C of size nxn where each element of C is given
by the following equation.

i
Ci= 2 aby;
k=1

Write a program that will read the values of elements of A and B and produce the
product matrix C.
Write a program that fills a five-by-five matrix as follows:

¢ Upper left triangle with +1s

*» Lower right triangle with —1s

= Right to left diagonal with zeros
Display the contents of the matrix using not more than two printf statements
Selection sort is based on the following idea:
Selecting the largest array element and swapping it with the last array element leaves
an unsorted list whose size is 1 less than the size of the original list. If we repeat this
step again on the unsorted list we will have an ordered list of size 2 and an unordered
list size n-2 . When we repeat this until the size of the unsorted list becomes one, the
result will be a sorted list.
Write a program to implement this algorithm.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Character Arrays and Strings =231

This will result in a compile time error. Also note that we cannot separate the initializa-
tion from declaration. That is,

char str3[5];
str3 = "GDOD";
18 not allowed. Similarly,
char s1[4] = "abc";
char s2[4];
s2 = sk: /* Error */

is not allowed. An array name cannot be used as the left operand of an assignment operator.

Terminating Null Character

You must be wondering, “why do we need a terminating null character?” As we
know, a string is not a data type in C, but it is considered a data structure stored in
an array. The string is a variable-length structure and is stored in a fixed-length
array. The array size is not always the size of the string and most often it is much
larger than the string stored in it. Therefore, the last element of the array need not
represent the end of the string. We need some way to determine the end of the
string data and the null character serves as the “end-of-string” marker.

8.3| READING STRINGS FROM TERMINAL

Using scanf Function

The familiar input function seanf can be used with %s format specification to read in a
string of characters. Example:

char address[10]
scanf("%s", address);
The problem with the seanf function is that it terminates its input on the first white space it

finds. A white space includes blanks, tabs, carriage returns, form feeds, and new lines.
Therefore, if the following line of text is typed in at the terminal,

NEW YORK

then only the string “NEW™ will be read into the array address, since the blank space after
the word ‘NEW’ will terminate the reading of string.

The scanf function automatically terminates the string that is read with a null character
and therefore the character array should be large enough to hold the input string plus the
null character. Note that unlike previous scanf calls, in the case of character arrays, the
ampersand (&) is not required before the variable name.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Character Arrays and Strings I 235

Output
Enter text. Press <Return> at end
Programming in C is interesting.
Programming in C is interesting.
Enter text. Press <Return> at end
National Centre for Expert Systems, Hyderabad. 5
National Centre for Expert Systems, Hyderabad.

Fig. 8.2 Program to read a line of text from terminal

Another and more convenient method of reading a string of text containing whitespaces is
to use the library function gets available in the <stdio.Ai> header file. This is a simple func-
tion with one string parameter and called as under:

gets (str);

str is a string variable declared properly. It reads characters into str from the keyboard
until a new-line character is encountered and then appends a null character to the string.
Unlike secanf, it does not skip whitespaces. For example the code segment

char line [80];
gets (line);
printf ("%s", line);

reads a line of text from the keyboard and displays it on the screen. The last two statements
may be combined as follows:

printf("%s", gets(line));
(Be careful not to input more character that can be stored in the string variable used. Since C
does not check array-bounds, it may cause problems.)

C does not provide operators that work on strings directly. For instance we cannot assign
one string to another directly. For example, the assignment statements.

string = "ABC";
stringl = string;

are not valid. If we really want to copy the characters in string2 into stringl, we may do so
on a character-by-character basis.

Example B.EJ Write a program to copy one string into another and count the number
of characters copied,

The program is shown in Fig. 8.3. We use a for loop to copy the characters contained inside
string?2 into the stringl. The loop is terminated when the null character is reached. Note
that we are again assigning a null character to the stringl.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Character Arrays and Strings | 239

d:=¢ + 1;
printf("|%-12.*s|\n", d, string);

CP

CPr

CPro
CProg :
CProgr !
CProgra i
CProgram |
CProgramm
CProgrammi
CProgrammin |
CProgramming
CProgramming

CProgrammin |
CProgrammi |
CProgramm
CProgram
CProgra
| CProgr
CProg
CPro

CPr

CP

| ik

AT S R : T T A A B % o 5 TR Y e

Fig. 8.5 lllustration of variable field specifications by printing sequences ufdrnmctem--}g;ﬁ:-

C i C| : C|
CP | CP| C]
CPr E CPr| l C|
CPro r CPro| C|
CProg i CProg| C|
CProgr ; CProgr| C|
CProgra | CProgra| Cl
CProgram E CProgram| C|

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

" Character Mﬁyﬁlﬂiﬁﬂngs | 249

this compares the left-most n characters of s1 to s2 and returns.

(a) 0 if they are equal;
(b) negative number, if 51 sub-string is less than s2; and
(¢) positive number, otherwise.

strncat

This is another concatenation function that takes three parameters as shown below:
strncat (sl, s2, n);

This call will concatenate the left-most n characters of s2 to the end of s1. Example:

|

Al |

strstr
It is a two-parameter function that can be used to locate a sub-string in a string. This takes
the forms:

strstr (sl, s2):
strstr (s1, "ABC");

The function strstr searches the string s1 to see whether the string s2 is contained in s1. If
yes, the function returns the position of the first occurrence of the sub-string. Otherwise, it
returns a NULL pointer. Example.

if (strstr (sl, s2) == NULL)
printf("substring is not found");
else
printf("s2 is a substring of sl1");

We also have functions to determine the existence of a character in a string. The function
call

strchr(sl, 'm');
will locate the first occurrence of the character ‘m’ and the ecall
strrchr{sl, 'm'):

will locate the last occurrence of the character ‘m’ in the string s1.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

- Character Arrays and Strings | 253

Be aware the return values when using the ftunctions stremp and
strnemp for comparing strings.

When using string functions for copying and concatenating strings, make
sure that the target string has enough space to store the resulting string.
Otherwise memory overwriting may occur.

The header file <stdio.h> is required when using standard I/O functions.
The header file <ctype.h> is required when using character handling func-
tions.

The header file <stdlib.h> is required when using general utility functions.
The header file <string.h> 15 required when using string manipulation
functions.

B

B

2R RB

Case Studies

One of the practical applications of string manipulations is counting the words in a text. We
assume that a word is a sequence of any characters, except escape characters and blanks,
and that two words are separated by one blank character. The algorithm for counting words
is as follows:

1. Read a line of text.

2. Beginning from the first character in the line, look for a blank. If a blank is found,

increment words by 1.

3. Continue steps 1 and 2 until the last line is completed.

The implementation of this algorithm is shown in Fig. 8.11. The first while loop will be
executed once for each line of text. The end of text is indicated by pressing the ‘Return’ key
an extra time after the entire text has been entered. The extra ‘Return’ key causes a newline
character as input to the last line and as a result, the last line contains only the null charac-
ter.

The program checks for this special line using the test

if (line[0] == \0’)
and if the first (and only the first) character in the line is a null character, then counting is
terminated. Note the difference between a null character and a blank character.

1. Counting Words in a Text

Program
#include <stdio.h=>
main()
{
char 1ine[81], ctr;
NE 158,
end = 0,
characters = 0,
words 0,
lines 0;

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

. Character Arrays and Surings | 257

Argand,J.R 900823
Bessel ,F.W 719731
Gandhi,M.K 362718
Gauss,C.F 806788
Gibbs,J.W 123145
Lagrange,J.L 869245
Leibniz,G.W 711518
Poisson,5.D 853240
Stokes,G.G 545454

Sturm,C.F

. Fi‘-a:‘i“ ro
B ol G

F R 1

.eview Questions

8.1 State whether the following statements are true or false
(a) When initializing a string variable during its declaration, we must include the
null character as part of the string constant, like “GOOD\0”,
(b) The gets function automatically appends the null character at the end of the
string read from the keyboard.
(c) When reading a string with scanf, it automatically inserts the terminating null
character.
(d) String variables cannot be used with the assignment operator.
(e) We cannot perform arithmetic operations on character variables.
(f) We can assign a character constant or a character variable to an int type variable.
(g) The function scanf cannot be used in any way to read a line of text with the whate-
spaces.
(h) The ASCII character set consists of 128 distinct characters.
(i) In the ASCII collating sequence, the uppercase letters precede lowercase letters.
(j) In C, it is illegal to mix character data with numeric data in arithmetic operations.
(k) The function getchar skips white-space during input.
(I) In C, strings cannot be initialized at run time.
(m) The input function gets has one string parameter.
(n) The function call strepy(s2, s1); copies string s2 into string s1.
(0) The function call stremp(“abe”, “ABC”); returns a positive number.
8.2 Fill in the blanks in the following statements.

(a) We can use the conversion specification in scanf to read a line of text.
(b) We can initialize a string using the string manipulation function ;
(c) The function strneat has parameters.

(d) To use the function atei in a program, we must include the header file
(e) The funetion does not require any conversion specification to read a string
from the keyboard.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Character Arrays and Strings HZE1

8.14 Write a program to create a directory of students with roll numbers. The program

should display the roll number for a specified name and vice-versa.
8.15 Given a string

char str [| =“123456789" ;
Write a program that displays the following:
1
-
34543
4567654
567898765

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

User-Defined Fonetions | 265

Except the starting point, there are no other predetermined relationships, rules of prec-
edence, or hierarchies among the functions that make up a complete program. The functions
can be placed in any order. A called function can be placed either before or after the calling
function. However, it is the usual practice to put all the called functions at the end. See the
box “Modular Programming”

Main ()
{

i

— e e e ———

)

1|'

function 1();

s IR function 2(); L LT PR

1— function 1();

— ——— — - — = = = e

e 1

| { call 5
| q .
| e
return | } —_— —
| call i
function2(); PESRCE P e ST

- function 3(); -

|

, Lreturn

e]

call

function3(); -

return
)

-

Fig. 9.2 Flow of control in @ multi-function program

LLEE]

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

User-Defined Functions IZEH‘ |

Some examples of typical function definitions are:

—— i md b i —— . ——— 3 T RIT T T TEWE

{a) float mul (float x, float y)
4 {

float result; /* local variable */
A result = x * y: /* computes the product */
” return (result); /* returns the result */

(b) wvoid sum (int a, int b)

{ .
printf ("sum = %s", a + b); /* no local variables */
return; /* optional */
: :
(c) void display (void) '
{ /* no local variables */

printf ("No type, no parameters");
/* no return statement */

NOTE:

1. When a function reaches its return statement, the control is transferred back to the calling |
program. In the absence of a return statement, the closing brace acts as a void return.

2. A local variable is a variable that is defined inside a function and used without having any |
role in the communication between functions.

9.6] RETURN VALUES AND THEIR TYPES

As pointed out earlier, a function may or may not send back any value to the calling function.
If it does, it is done through the return statement. While it is possible to pass to the called
function any number of values, the called function can only return one value per call, at the
most.

The return statement can take one of the following forms:

return;

or
return(expression);

The first, the ‘plain’ return does not return any value; it acts much as the closing brace of
the function. When a return is encountered, the control is immediately passed back to the
calling function. An example of the use of a simple return is as follows:

if(error)
return;

hWISHE R In CO99. if a function is specified as returning a value, the return must have value associ-
ated with it

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Programiming in ANSI C

274 }

assumptions are wrong, the linker will fail and we will have to change the program.
The moral is that we must always include prototype declarations,
preferably in global declaration section.

Parameters Everywhere!

Parameters {also known as arguments) are used in three places;

1. in declaration (prototypes),
2. in function call, and
3. in function definition.

The parameters used in prototypes and function definitions are called formal
parameters and those used in function calls are called actual parameters. Actual
parameters used in a calling statement may be simple constants, variables or ex-
pressions.

The formal and actual parameters must match exactly in type, order and number,
Their names, however, do not need to match.

A function, depending on whether arguments are present or not and whether a value is

CATEGORY OF FUNCTIONS

returned or not, may belong to one of the following categories:

In the sections to follow, we shall discuss these categories with examples. Note that, from

Category 1: Functions with no arguments and no return values.
Category 2: Functions with arguments and no return values.
Category 3: Functions with arguments and one return value.
Category 4: Functions with no arguments but return a value.
Category 5: Functions that return multiple values.

now on, we shall use the term arguments (rather than parameters) more frequently:

9.10

When a function has no arguments, it does not receive any data from the calling function.
Similarly, when it does not return a value, the calling function does not receive any data
from the called function. In effect, there is no data transfer between the calling function and
the called function. This is depicted in Fig. 9.3. The dotted lines indicate that there is only a

NO ARGUMENTS AND NO RETURN VALUES

transfer of control but not data.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

User-Defined. Functions I 281

operations. For example, different programs may require different output formats for dis-
play of results. These shortcomings can be overcome by handing over the result of a function
to its calling function where the returned value can be used as required by the program.

A self-contained and independent function should behave like a ‘black box’ that receives a
predefined form of input and outputs a desired value. Such functions will have two-way data
communication as shown in Fig. 9.8,

function1() Values function 2 (f)
{ of arguments {

funcion2(a) - § = [Foand...

Function result

Fig. 9.8 Two-way data communication between functions

We shall modify the program in Fig. 9.7 to illustrate the use of two-way data communica-
tion between the calling and the called functions.

Example ?.EJ In the program presented in Fig. 9.7 modify the function value, to return
the final armount calculated to the main, which will display the required
output at the terminal. Also exfend the versatility of the function printline
by having it to take the length of the line as an argument.

The modified program with the proposed changes is presented in Fig. 9.9. One major change
is the movement of the printf statement from value to main.

Program

void printline (char ch, int len);
value (float, float, int);

M main()
{
float principal, inrate, amount;
int period;
printf("Enter principal amount, interest");
printf("rate, and periodin");
scanf(%sf %f %d", &principal, &inrate, &period);
printline ('*' , 52);
5. amount = value (principal, inrate, period);
L printf("\n%f\t%f\t%d\t%f\n\n",,principal,
4 inrate,period,amount);
printline('="',52);

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

292! At A

When dealing with array arguments, we should remember one major distinction. If a
function changes the values of the elements of an array, then these changes will be made to
the original array that passed to the function. When an entire array is passed as an argu-
ment, the contents of the array are not copied into the formal parameter array; instead,
information about the addresses of array elements are passed on to the function. Therefore,
any changes introduced to the array elements are truly reflected in the original array in the
calling function. However, this does not apply when an individual element is passed on as
argument. Example 9.6 highlights these concepts.

Example 9.6| Write a program that uses a function to sort an array of integers.

A program to sort an array of integers using the function sort() is given in Fig. 9.12. Its
output clearly shows that a function can change the values in an array passed as an argu-
ment.

1 |

Program

: void sort(int m, int x[1);
f main()

{
; int 1y
I int marks[5] = {40, 90, 73, 81, 35};

printf("Marks before sorting\n");
for(i = 0; i < 5; i++)

printf("%d ", marks[i]);
printf("\n\n");

sort (5, marks);

printf("Marks after sorting\n");
for(i = 0; 1 < §; i++)
printf("%4d", marks[i]);

printf("\n");
}
void sort(int m, int x[])
{

nt 1 3 %2

for(i = 1; i <= m-1; i++)
for(j = 13 j <= m-i; j++)
;f(x{j-ll >= x[j])
t = x{J-1];
x[i-1] = x[il;

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

main()

{

int number;

We may also use the keyword auto to declare automatic variables explicitly.
main()

{

auto int number;

One important feature of automatic variables is that their value cannot be changed acci-
dentally by what happens in some other function in the program. This assures that we may
declare and use the same variable name in different functions in the same program without
causing any confusion to the compiler.

Exumpln Q.U Write a multifunction to illustrate how automatic variables work.

A program with two suhprngrams functionl and function2 is shown in Fig. 9.13. m is an
automatic variable and it is declared at the beginning of each function. m is initialized to 10,
100, and 1000 in functionl, function2, and main respectively.

When executed, main calls funetion2 which in turn calls functionl. When main is
active, m = 1000; but when function2 is called, the main’s m is temporarily put on the shelf
and the new local m = 100 becomes active. E;lmﬂnrl}r, when functionl is called, both the
previous values of m are put on the shelf and the latest value of m (=10) becomes active. As
soon as functionl (m=10) is finished, function2 (m=100) takes over again. As soon it is
done, main (m=1000) takes over. The uutput clearly shows that the value assigned to m in
one function does not affect its value in the other functmna, and the local value of m is
destroyed when it]EEWEE a function, ;

Program

void functionl(void);
void function2(void):
main{)

{
int m = 1000;
function2();

printf("%d\n",m); /* Third output */
} [*
void functionl(void) ‘

{

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

302 | Programming in:ANSI C

Function declarations outside of any function behave the same way as variable declara-
tions.

Static Variables

As the name suggests, the value of static variables persists until the end of the program. A
variable can be declared static using the keyword static like

static int Xx;
static float y;

A static variable may be either an internal type or an external type depending on the place
of declaration,

Internal static variables are those which are declared inside a function. The scope of inter-
nal static variables extend up to the end of the function in which they are defined. Therefore,
internal static variables are similar to auto variables, except that they remain in existence
(alive) throughout the remainder of the program. Therefore, internal statie variables can be
used to retain values between function calls. For example, it can be used to count the number
of calls made to a function.

Example 'i'.?lj Write a program to illustrate the properties of a static variable.

The program in Fig. 9.15 explains the behaviour of a static variable.

Lrrer rmr e g s m— e = = = - e ——

i' Program

void stat(void); l
main () :
{ |
int i; : !
for{i=1; i<=3; i++)
stat{ }):

}
| void stat(void)

ﬁ static int x = 0;

X = X+l;
P printf(“x = %d\n", x);

Qutput

1]
o

b
1}
r~a

Fig. 9.15 [llustration of static variable

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

31u|

4 Program

G #include <stdio.h>

3 float start_point, /* GLOBAL VARIABLES */
b end point,

? total area;

5 int numtraps;

H main()

: {

void input{void);
float find area(float a,float b,int n); /* prototype */

print ("AREA UNDER A CURVE");
input();
total _area = find_area(start_point, end_point, numtraps);
printf("TOTAL AREA = %f", total area);
}
void input(void)
{
printf("\n Enter lower limit:");
scanf("%f", &start point);
printf("Enter upper limit:");
scanf("%f", &end point);
printf("Enter number of trapezoids:"):
scanf("%d", &numtraps);

}
float find_area(float a, float b, int n)

{
float base, lower, hl, h2; /* LOCAL VARIABLES */
float function x(float x); /* prototype */
float trap area(float hl,float h2,float base);/*prototype*/

base = (b-1)/m;
lower = aj

for(lower =a; lower <= b-base; lower = lower + base)
{

hl function_x(lower);

hl function x(lower + base);

total_area += trap_area(hl, h2, base);

| .

J
return(total _area); '
float trap_area(float height_1,float height 2,float base)

{
float area; /* LOCAL VARIABLE */

area = 0.5 ° (height_1 + height_2) ~ base;
return{area);

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

314] - Programving in ANSI C

return (x / y);
}
What will be the value of the following function calls”
(a) divide (10, 2)
(b) divide (9, 2)
(c) divide (4.5, 1.5)
(d) divide (2.0, 3.0)
9.13 What will be the effect on the above function calls if we change the header line as follows:
(a) int divide (int x, int y)
(b) double divide (float x, float y)

9.14 Determine the output of the following program?
int prod(int m, int n);

main ()

{
int x = 10;
int y = 20;
int p, q;

p = prod (x,¥);
q = prod (p, prod (x,z));
printf ("%d %d\n", p,q);
}
int prod(int a, int b)
{

}

9.15 What will be the output of the following program?
void test (int *a);
main ()

{

return (a * b);

int x = 50;
test (&x);
printf("%d\n", x):
}
void test (int *a);

{

}
9.16 The function test is coded as follows:

int test (int number)
{

*a = *a + 50;

int m, n = 0;
while (number)

{

m = number % 10;
if (m% 2)

n=n+1;

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

318} Programming in ANSI C

book name, author, number of pages, and price. We can define a structure to hold this infor-
mation as follows: ek

struct book bank

{
char title[20];
char author([15];
int pages;
float price;

3

The keyword struet declares a structure to hold the details of four data fields, namely
title, author, pages, and price. These fields are called structure elements or members.
Each member may belong to a different type of data. book_bank is the name of the structure
and is called the structure tag. The tag name may be used subsequently to declare variables
that have the tag's structure.

Note that the above definition has not declared any variables. It simply describes a format
called template to represent information as shown below:

title - amay of 20 characters - .

author | array of 15 characters

pages

price

The general format of a structure definition is as follows:

: struct tag_name
: {
3 data type memberl;
data type membere;
.IJ T e
A } '
B A, T e T T s S e e B A T P S T e I

In defining a structure you may note the following syntax:
1. The template is terminated with a semicolon.
2. While the entire definition is considered as a statement, each member is declared
independently for its name and type in a separate statement inside the template.
3. The tag name such as book_bank can be used to declare structure variables of its

type, later in the program.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

322} Programming in ANSI C

scanf("%s %d %s %d %f",
person.name,
&person.day,
person.month,
&person.year,
Lperson.salary);

printf("%s %d %s %d %f\n",
person.name,
person.day,
person.month,
person.year,
person.salary);

SRR s e

o

'

}

Output
Input Values
M.L.Goel 10 January 1945 4500

M.L.Goel 10 January 1945 4500.00

Fig. 10.1 . Defining and accessing structure members

10.5| STRUCTURE INITIALIZATION

Like any other data type, a structure variable can be initialized at compile time.

main()
{
struct
{

int weight;
float height;

}
student = {60, 180.75};

This assigns the value 60 to student. weight and 180.75 to student. height. There is a
one-to-one correspondence between the members and their initializing values.

A lot of variation is possible in initializing a structure. The following statements initialize
two structure variables. Here, it is essential to use a tag name.

main()

{

struct st record

{

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

342' Programming in ANS| C —

Programs

#include <stdio.h>

#include <string.h=

struct record

{
char author[20];
char title[30];
float price;

struct i

{ |
char month[10]; |
int year; :

}

date;

char publisher[10];
int guantity;
5
int look up(struct record table[],char s1[],char s2[],int m);
void get (char string []);
main()
{
char title[30], author[20];
int index, no_of records:
char response[10], quantity[10]; .
struct record book[] = {
{"Ritche","C Language",45.00,"May",1977,"PHI", 10},
{"Kochan","Programming in C",75.50,"July", 1983, "Hayden" ,5},
{"Balagurusamy","BASIC",30.00,"January",1984,"TMH",0},
{"Balagurusamy","COBOL",60.00,"December", 1988, "Macmillan",25}
ks

ne_of records = sizeof(book)/ sizeof(struct record);

do

{
printf("Enter title and author name as per the list\n");
printf(“\nTitle: "3i
get(title);
printf("Author: ")
get(author);
index = look up(book, title, author, no_of_records); ﬂ
if(index 1= -1) /* Book found */ |
{

i

printf({“\n%s %s %.2f %s %d %s\n\n",
book[index] .author,
book[index].title, |

. L= - - 5
OV TIgNIE0 Mmawerial

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

380 |~ Programming,in ANSI C

Remember that the definition for a pointer variable allocates memory only
for the pointer variable, not for the variable to which it is pointing.

If we want a called function to change the value of a variable in the calling
function, we must pass the address of that variable to the called function.
When we pass a parameter by address, the corresponding formal param-
eter must be a pointer variable.

It is an error to assign a numeric constant to a pointer variable,

It is an error to assign the address of a variable to a variable of any basic
data types.

It is an error to assign a pointer of one type to a pointer of another type
without a cast (with an exception of void pointer).

A proper understanding of a precedence and associativity rules is very
important in pointer applications. For example, expressions like *p++,
*ol 1, (*p)l], (p).member should be carefully used.

When an array is passed as an argument to a function, a pointer is actually
passed. In the header function, we must declare such arrays with proper
size, except the first, which is optional.

Z3 A very common error is to use (or not to use) the address operator (&) and
the indirection operator (*) in certain places. Be careful. The compiler may
not warn such mistakes.

> BB B B B

B

B

Case Studies

1. Processing of Examination Marks

Marks obtained by a batch of students in the Annual Examination are tabulated as follows:

Student name Marks obtained
S. Laxmi 45 67 38 55
V.5. Rao 77 89 56 69

It is required to compute the total marks obtained by each student and print the rank list
based on the total marks.

The program in Fig. 11.14 stores the student names in the array name and the marks in
the array marks. After computing the total marks obtained by all the students, the program
prepares and prints the rank list. The declaration

int marks[STUDENTS] [SUBJECTS+1];

defines marks as a pointer to the array’s first row. We use rowptr as the pointer to the row
of marks. The rowptr is initialized as follows:
int (*rowptr) [SUBJECTS+1] = array;

Note that array is the formal argument whose values are replaced by the values of the
actual argument marks. The parentheses around *rowptr makes the rowptr as a pointer
to an array of SUBJECTS+1 integers. Remember, the statement

int *rowptr[SUBJECTS+1];

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

|
388 |

.rugramming Exercises

Programming in ANSI C

559 |

112

11.3
11.4

11.5

11.6

11.7

11.8

11.9

O

Write a program using pointers to read in an array of integers and print its elements
in reverse order.
We know that the roots of a quadratic equation of the form

axl+bx+c=0

are given by the following equations:

_ —b + square-root (b* — 4ac)

KI—

2a
= =l square - root (b” — 4ac)
=

2a

Write a function to calculate the roots. The function must use two pointer parameters,
one to receive the coefficients a, b, and ¢, and the other to send the roots to the calling
function.

Write a function that receives a sorted array of integers and an integer value, and
inserts the value in its correct place.

Write a function using pointers to add two matrices and to return the resultant matrix
to the calling function.

Using pointers, write a function that receives a character string and a character as

argument and deletes all occurrences of this character in the string. The function
should return the corrected string with no holes.

Write a function day_name that receives a number n and returns a pointer to a
character string containing the name of the corresponding day. The day names should
be kept in a static table of character strings local to the function.

Write a program to read in an array of names and to sort them in alphabetical order.
Use sort function that receives pointers to the functions stremp and swap.sort in
turn should call these functions via the pointers.

Given an array of sorted list of integer numbers, write a function to search for a par-
ticular item, using the method of binary search. And also show how this funetion may
be used in a program. Use pointers and pointer arithmetic.

(Hint: In binary search, the target value is compared with the array’s middle element.
Since the table is sorted, if the required value is smaller, we know that all values
greater than the middle element can be ignored. That is, in one attempt, we eliminate
one half the list. This search can be applied recursively till the target value is found.)
Write a function (using a pointer parameter) that reverses the elements of a given
array.

11.10 Write a function (using pointer parameters) that compares two integer arrays to see

whether they are identical. The function returns 1 if they are identical, 0 otherwise.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

File Management in C

= s —— —

393

| Program
#include <stdio.h=>

main()

{
FXLE *¢1y
char c;
printf("Data Inputi\n\n");
/* Open the file INPUT */
fl = fopen("INPUT", "w");

; /* Get a character from keyboard */
4 while((c=getchar()) != EOF)

/* Write a character to INPUT */
pute{c,fl);

/* Close the file INPUT */

fclose(fl);
printf(“\nData Output\n\n");

/* Reopen the file INPUT .y
f1 = fopen("INPUT","r");

/* Read a character from INPUT*/
while((c=getc(f1)) != EOF)

/* Display a character on screen */
printf{"%c".c):

/* Close the file INPUT &
fclose(fl);

| |
| Output

Data Input
This is a program to test the file handling
features on this system™Z

Data Qutput
This is a program to test the file handling
features on this system

- T

e

- —EIT T , - - — -
3 e '

T3V B Tt e S S 1 e I T }

Fig. 12.1 Character orientéd readlwrite operations on o file '

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

ftell takes a file pointer and return a number of type long, that corresponds to the cur-
rent position. This function is useful in saving the current position of a file, which can be
used later in the program. It takes the following form:

n = ftell(fp);

n would give the relative offset (in bytes) of the current position. This means that n bytes
have already been read (or written).

rewind takes a file pointer and resets the position to the start of the file. For example, the
statement

rewind(fp);
n = ftell(fp);

would assign 0 to n because the file position has been set to the start of the file by rewind.
Remember, the first byte in the file is numbered as 0, second as 1, and so on. This function
helps us in reading a file more than once, without having to close and open the file. Remem-
ber that whenever a file is opened for reading or writing, a rewind is done implicitly.

fseek function is used to move the file position to a desired location within the file. It
takes the following form:

fseek(file 'ptr, offset, position);

file_ptr is a pointer to the file concerned, offset is a number or variable of type long, and
position is an integer number. The offset specifies the number of positions (bytes) to be moved
from the location specified by position. The position can take one of the following three val-
ues:

Value Meaning
0 Beginning of file
| Current position
2 End of file

The offset may be positive, meaning move forwards, or negative, meaning move back-
wards.

Examples in Table 12.2 illustrate the operations of the fseek function:

Table 12.2 Operations of fseek Function

Statement Meaning
fseek(fp,0L,0); Go to the beginning.
(Similar to rewind)
fseek(fp,0L.,1); Stay at the current position.
{Rarely used)
fseek(ip,0L,2); Go to the end of the file, past the last character of the file.
fseek(fp,m,0); Move to (m+1 jth byte in the file.
fseek(fp,m,1); Go forward by m bytes.
fseek(fp,-m,1); (Go backward by m bytes from the current position.
fseek(fp,-m,2); Go backward by m bytes from the end. (Positions the file to the mth

character from the end.)

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

416 I Programming in ANSI C

When we no longer need the data we stored in a block of memory, and we do not intend to
use that block for storing any other information, we may release that block of memory for
future use, using the free function:

free (ptr);

ptr is a pointer to a memory block, which has already been created by malloc or calloe. Use
of an invalid pointer in the call may create problems and cause system crash. We should
remember two things here:
1. It is not the pointer that is being released but rather what it points to.
2. To release an array of memory that was allocated by calloc we need only to release
the pointer once. It is an error to attempt to release elements individually.
The use of free function has been illustrated in Example 13.2.

13.6| ALTERING THE SIZE OF A BLOCK: REALLOC

It is likely that we discover later, the previously allocated memory is not sufficient and we
need additional space for more elements. It is also possible that the memory allocated is
much larger than necessary and we want to reduce it. In both the cases, we can change the
memory size already allocated with the help of the function realloc. This process is called
the reallocation of memory. For example, if the original allocation is done by the statement

ptr = malloc(size);
then reallocation of space may be done by the statement
ptr = realloc(ptr, newsize);

This function allocates a new memory space of size newsize to the pointer variable ptr and
returns a pointer to the first byte of the new memory block. The newsize may be larger or
smaller than the size. Remember, the new memory block may or may not begin at the same
place as the old one. In case, it is not able to find additional space in the same region, it will
create the same in an entirely new region and move the contents of the old block into the new
block. The function guarantees that the old data will remain intact.

If the function is unsuccessful in locating additional space, it returns a NULL pointer and
the original block is freed (lost). This implies that it is necessary to test the success of
operation before proceeding further. This is illustrated in the program of Example 13.2.

Example 13.2J Write a program to store a character string in a block of memory space
created by malloc and then modify the same to store a larger string.

The program is shown in Fig. 13.3. The output illustrates that the original buffer size ob-
tained is modified to contain a larger string. Note that the original contents of the buffer
remains same even after modification of the original size.

Program
#include <stdio.h=
#include<stdlib.h>
#define NULL O
main()

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

| 429

DﬂﬁuwklﬂmmnqﬁhﬂnmuhulmuiLhkmilﬁﬁE'

new—=>number = x;
new—>next = head;
head = new;

node *insert(node *head)
{
node *find(node *p, int a);
node *new; /* pointer to new node */
node *nl; /* pointer to node preceding key node */
int key;
int x; /* new item (number) to be inserted */

printf("Value of new item?");

scanf("%d", &x):

printf("Value of key item ? (type -999 if last) ");
scanf("%d", &key);

if(head—=number == key) /* new node is first */
{
new = (node *)malloc(size of(node));
new—>=number = x;
new—>next = head;
head = new;

}

else /* find key node and insert new node */

{ /* before the key node */
nl = find(head, key); /* find key node */

if(nl == NULL)
printf("\n key is not found \n");
else /* insert new node */
{
new = (node *)malloc(sizeof(node));
new=>number = x;
new->next = nl->next;
nl->next = new;
}
}
return(head);
}
node *find(node *1ists, int key)
{
if(list—=next—=number == key) /* key found */
return{list);
else

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

FdE

Programming in ANSI-C -

void print{node *1ist)

{

}

if(list—=next != NULL)
{

printf("%d —-—>", list—>number);

if(list ->next->next = = NULL)
printf("%d", 1ist->next->number);

print(list—>next);

}

return:

node *ﬁnsert{nnde *head, int x)

{

node *pl, *p2, *p;
pl = NULL;
pZ = head; /* p2 points to first node */

for{ ; p2->number < x; p2 = p2->next)

pl = pé;
if(p2—=next—=>next == NULL)
{
p2 = p2-=next; /* insertion at end */
break;
}

j
/*key node found and insert new node */
p = (node)malloc(sizeof(node)); / space for new node */
p—>number = x; /* place value in the new node */
p—>next = p2; /*1ink new node to key node */
if (pl == NULL)
Erg:ad = p; /* new node becomes the first node */

pl-=next = p; /* new node inserted in middle */

return (head);

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

The Preprocessor

114.1] INTRODUCTION

C is a unique language in many respects. We have already seen features such as structures
and pointers. Yet another unique feature of the C language is the preprocessor. The C pre-
processor provides several tools that are unavailable in other high-level languages. The pro-
grammer can use these tools to make his program easy to read, easy to modify, portable, and
more eflicient.

The preprocessor, as its name implies, is a program that processes the source code before
it passes through the compiler. It operates under the control of what is known as preproces-
sor command lines or directives. Preprocessor directives are placed in the source program
betore the main line. Before the source code passes through the compiler, it is examined by
the preprocessor for any preprocessor directives. If there are any, appropriate actions (as per
the direetives) are taken and then the source program is handed over to the compiler.

Preprocessor directives follow special syntax rules that are different from the normal C
syntax. They all begin with the symbol # in column one and do not require a semicolon at the
end. We have already used the directives #define and #include to a limited extent. A set of
commonly used preprocessor directives and their functions is given in Table 14.1.

Table 14.1 Preprocessor Directives

Directive Function

#define Defines a macro substitution

#undef Undefines a macro

#include Specifies the files to be included

Hifdef Test for a macro definition

#Hendif Specifies the end of #if.

#Hifndef Tests whether a macro 1s not defined.
#if Test a compile-time condition

#else Specifies alternatives when #if test fails.

These directives can be divided into three categories:
1. Macro substitution directives.
2. File inclusion directives.
3. Compiler control directives.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

4&P1; Programming in ANSI C

!

char tmp[8];
float tst;
_setcursortype(_NORMALCURSOR) ;
print2screen(3,33,"Enter Item Code: “,BROWN,BLUE,O0);fflush(stdin);gotopos(3,53);
scanf("%s",&tmp);
if{Checkld(tmp)==0 && fEdit == FALSE)
{

messagebox(10,33,"The id already exists. ","Error *,'

' ,mboxbrdrclr,mboxbgc]r,mboxfgcir,0);

return 0;
}
strcpy(inv_stock.itemcode,tmp); /*Means got a correct item code*/
print2screen(4,33,"Name of the Item: “,BROWN,BLUE,Q);fflush(stdin);gotopos(4,53);
gets{inv_stock.itemname);
print2screen{5,33,"Price of Each Unit: " ,BROWN,BLUE,0);fflush(stdin);gotopos(5,53);
scanf("%f",4inv_stock.itemrate);
print2screen(6,33,"Quantity: “,BROWN,BLUE,OQ):fflush(stdin);gotopos(6,53);
scanf("%f",&inv_stock.itemqty);
print2screen(7,33,"Reorder Level: ",BROWN,BLUE,Q);fflush(stdin);gotopos(7,53);
scanf("%d",&inv_stock.mingty);
_setcursortype(NOCURSOR);
return 1;

[*Returns O if the id already exists in the database, else returns 1*/
int CheckId{char item[8])

{

J

rewind(dbfp) ;
while(fread(&inv_stock,stocksize,l,dbfp)==1)
if(stremp(inv_stock.itemcode,item)==0)
return(0):
return(1);

/*Displays an Item*/
DisplayltemRecord{char idno[8])

{

}

rewind(dbfp);
while(fread(&inv_stock,stocksize,1,dbfp)==1)

if(strcmp(idno, inv_stock.itemcode)==0)
DisplayltemInfo();

return;

' /*Displays an Item information*/
DisplayltemInfo()

{

int r=7;
textcolor({menutxtfgclir);
textbackground (menutxtbgclir);

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

PROGRAMMING IN

ANSI

The hallmark of this classic text is its simple and lucid presentation
of the C programming concepts. The concept of ‘learning by
example’ used in the book helps the beginners in better

understanding the implementation and applications of the C
language. This is achieved through sample programs, case studies,

programming problems and projects.

Salient features

@)

Codes with comments provided throughout the book illustrate how the various

| features of the language are put together to accomplish specified tasks

| o Case studies at the end of the chapters illustrate common ways C features are put

together and show real-life applications

@

problem areas

)

features of Cwhen handling large programs

)

two programming projects: “Inventory” and “Record Entry”

‘Just Remember’ section at the end of the chapters lists helpful hints and possible
. Guidelines for developing efficient C programs given in the last chapter, together with
a list of some common mistakes that a less experienced C programmer could make

Programming Projects discussed in the appendix show how to integrate the various

A CD along with the book provides all the programs in an executable format along with

URL: http://www.mhhe.com/balagurusamy/ansicse

www.tatamcgrawhill.com

The McGraw-Hill campanies i

% Higher Education

ISBN-13:978=0-07-0ObdL82-4
ISEN=-10:0=-07=DbALAC=1

740070":81 428

9

