7.10 Integration

It is well known that, if a function f(r) is known completely, even then it is not always
possible to evaluate the definite integral of it nsing analytic method. Again, in many
real life problems, we are required to integrate a function between two given limits,
but the function is not knawn explicitly, but, it is known in a tabular form (equally or
unequally spaced). Then a method, known as numerical integration or quadrature
can be used to solve all such problems.
The problem of numerical integration is stated below:

Given a sel of data points (xo,y0), (x1,01), ..., (Tn,yn) of a function y = f(r), it is
requived to find the value of the definite integral f:'f(r) drx. The function f(x) is replaced
by a suitable interpolating polynomial ¢(x).

Then the approrimate value of the definite integral is caleulated using the following
Jormula

b b
/ I(I} dr =~ é(I] dx. [76-1)
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Thus, different integration formulae can be derived depending on the type of the
interpolation formulae used.

A numerical integration formula is said to be of closed type, if the limits of integra-
tion a and b are taken as interpolating points. If @ and b are not taken as interpolating
points then the formula is known as open type formula.

7.11 General Quadrature Formula Based on Newton’s Forward
Interpolation

The Newtan's forward interpolation formula for the equispaced points z;,i = 0,1,...,n,
T; = g+ ih 1s
u—1)(u—2)

u—1
o(z) = yo + ulyo + u{ui,]ﬂzyn + u 3

5 Ay +- -, (7.65)

I — I . .
where u = ———, h is the spacing.

1
Let the interval [a,b] be divided into n equal subintervals such that a = g9 < 7 <
T9 < -+ < Fp="b. Then

b Tn
I =f flx)dz =~ / o(z) dz
a 0
*n 2 u? — 3u? + 2u

u“—1u 5
=/ [Iﬂ]‘i‘ ulyg + TA"Un‘f Tﬁayn-f . :| dz.
g : !

Since © = g +uh, dz = hdu, when £ = g then v = 0 and when = = z,, then u = n.
Thus,

" u? —u u® — 3u® + 2u
I= / [yg + ulyp + 2 Ay + —ar
n . -

n A2 3 2.n AS 4 n
=h[yUIU]3+Ayu[u] + =0 u——u—} Tt L u——u3+u2}n+---}

Adyg + - } hdu

2 1o 2l L3 210 3 la
. 2n? -3 3 —4n? + 4
=nh [yn + ;A?Jﬂ + %Azyu + %A% + o ] (7.66)

From this formula, one can generate different integration formulae by substituting
n=1,223,....

7.11.1 Trapezoidal Rule

Substituting n = 1 in the equation (7.66). In this case all differences higher than the
first difference become zero. Then

f:n flz)dz="h [L’u + %ﬂyu] = h[yu + %(yl - yu]] = g(yn +y1). (7.67)
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The formula (7.67) is known as the trapezoidal rule.

In this formula, the interval [a,b] is considered as a single interval, and it gives a
very rough answer. But, if the interval [a, b] is divided into several subintervals and this
formula is applied to each of these subintervals then a better approximate result may
be obtained. This formula is known as composite formula, deduced below.

Composite trapezoidal rule

Let the interval [a, b] be divided into n equal subintervals by the points a = xg, 71, T3,
.oy In =0b, where z; =g+ ih,1=1,2,...,n.
Applying the trapezoidal rule to each of the subintervals, one can find the composite
formula as

/f d:c_/ flz dr+/ f(z)dz + - /;:f(z)dx

h
E[Jn + ] + —[yl + 2] + y° +ya] + - E[yn-—l + ¥n)

= 5[yo+2{y1+yz+---+yn_1}+yn]. (7.68)

Error in trapezoidal rule

The error of trapezaidal rule is

b 1
= [ s dz - un+m) (7.69)

Let ¥ = f(z) be continuous and possesses continuous derivatives of all orders. Also,
it is assumed that there exists a function F(z) such that F'(z) = f(z) in [z0, 71].
Then

f:f(a:) dr = f: F'(z) dz = F(z1) — F(zo)

= F(zq + h) — F(xg) = F(zg) + hF'(zq) + Z—IF"( 0)

K2, h
= hf(zo) + 57 f' (@) + 5 " (x0) +
2 3

e (7.70)

= hyo +
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Again,

| =

—(yo+ ) = g{ya + y(zo + h)]

h h2
= glvo +y(=o) + hy'(z0) + Ey”(lul +- ]
2

h h
= E[yg+yg+hy{]+ayg+---]. (7.71)

Using (7.70) and (7.71), equation (7.69) becomes

h ' hg " h, I h'z 1
E_h[yn-!-ayg-l-gyu-l----]—E[Qyn-l-hyn‘l'ﬁyo'i'“']
I "
=_Eyn+...
h3 ' hg '
__Ef (Iu)-l'---—-ﬁ (£), (7.72)

wherea=1p < £ <1 =b
Equation (7.72) gives the error in the interval [z, z,].
The total error in the composite rule is

3

h.
E=-2(g+yi+ - +ui)

If y"(€) is the largest among the n quantities yfj, vy, ..., y/_, then

1 3. (b_ﬂ') 2.
P —— = —_" =b—a.
E < 12}3 ny (€) D h*y"(€), asnmh=b—a
Note 7.11.1 The error term shows that if the second and higher order derivatives of
f(z) vanish then the trapezoidal rule gives exact result of the integral. This means, the

method gives exact result when f(z) is linear.

Geometrical interpretation of trapezoidal rule

In this rule, the curve y = f(x) is replaced by the line joining the points A(zg,yp) and
B(z1,y) (Figure 7.1). Thus the area bounded by the curve y = f(z), the ordinates
T = T, T = 1) and the r-axis is then approximately equivalent to the area of the
trapezium (ABCD) bounded by the line AB, £ = z, £ = z; and z-axis.
The geometrical significance of composite trapezoidal rule is that the curve y = f(z)
is replaced by n straight lines joining the points (zg, yp) and (zy, ¥,); (1, ¥1) and (z2, ¥2);
.oy (Tn—1,Yn—1) and (z,,yn). Then the area bounded by the curve y = f(z), the lines
T = Tg,T = T, and the r-axis is then approximately equivalent to the sum of the area
of n trapeziums (Figures 7.2).
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Figure 7.1: Geometrical interpretation of trapezoidal rule.
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Figure 7.2: Composite trapezoidal rule.

Alternative deduction of trapezoidal rule

Let f € C?[a,b], where [a,}] is a finite interval. Now, transfer the interval [a, b] to [—1,1]

using the relation =z = a+d + b;—ai =p+ qt (say).

Let f(z) = f(p+qt) = g(t). When £ = a,b then t = —1,1, i.e., g(1) = f(b),9(-1) =
f(a).

Thus

I= / ' flz)de = / llg(r)qdf =q [ ulg(t)dr+ [n gtt)d]

1
= q [ lo(0) + o(-t)a.
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Now, applying integration by parts.

= q[{g(t +g(— }i} - fi‘/ﬂli[qr(t) - g'(—t)]dt

= q[g(1) + g(—1)] - qfl t.2tg"(c)dt, where 0 < c < 1
[by Lagrange’s I\IVT?

=q[f(a) + f(b)] — 2 ¢ g"(d) /l t?dt,0 <d <1,
[by MVT of integral Ca]cnli}ls]

= q[f(a) + f(b)] - gqq”(d)

= dlf(@) + 7)) - 36°F"p+ ad)
[f(ﬂ) +FO)] = 277(©), wherea <€ <b
3
o1 -2(552) e
h " o
=§[ ]——h3 (&), ash=b—a.

In this expression, the first term is the approximate integration obtained by trape-
zoidal Tule and the second term represents the error.

b
Algorithm 7.3 (Trapezoidal). This algorithm finds the value of/ f(x)dz based

a
on the tabulated values (z;, i), v = f(zi),1=0,1,2,...,n, using trapezoidal rule.

Algorithm Trapezoidal

Input function f(z);

Read a,b,n; //the lower and upper limits and number of subintervals.//
Computc h=(b—a)/n;

Set sum = %[f(a] + f(a+ nh)|;

fori=1ton—1da
Compute sum = sum + f(a + ih);
endfor;
Compute result = sum * h;
Print result;
end Trapezoidal
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Program 7.3

/* Program Trapezoidal
This program finds the value of integration of a functiomn
by trapezoidal rule.
Here we assume that f(x)=x"3. */
#include<stdio.h>
void main()
{
float a,b,h,sum; int n,i;
float f(float);
printf("Enter the values of a, b ");
scanf ("%f %f",&ka,&b);
printf("Enter the value of n ");
scanf ("%d",&n) ;
h=(b-a) /n;
sum={f (a)+f (a+n*h)) /2. ;
for(i=1;i<=n-1;i++) sum+=f(a+i*h);
sum=sum*h ;
printf("The value of the integration is %8.5f ",sum);
}

/* definition of the function f(x) */
float f(float x)

{
return (x*x*x) ;

}

A sample of input/output:

Enter the values of a, b0 1
Enter the value of mn 100
The value of the integration is 0.25002

7.11.2 Simpson’s 1/3 rule

In this formula the interval [a,d] is divided into two equal subintervals by the points
Tg,*1,Tg, where h = (b—a)/2, ) =zg9+ h and 29 = ) + h.

This rule is obtained by putting n = 2 in (7.66). In this case, the third and higher
order differences do not exist.
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The equation (7.66) is simplified as

In

1 1
f(z)dz =~ 2h [?Ju + Ayo + Ei\zyu] = 2h[yo + (1 — yo) + gz — 2+ vo)]
Io

h
=3 [vo + 4y1 + 12). (7.73)

The abave rule is known as Simpson’s 1/3 rule or simply Simpson’s rule.

Composite Simpson’s 1/3 rule

Let the interval [a,b] be divided into n (an even number) equal subintervals by the
points xg, Ty, T2,...,Tn, Where x; = xg+1h,1=1,2,...,n. Then

[abf(l') dr = /::2 flz) d:l:‘l‘/;4 fla)dz+ -+ fz:nz fe)ds

h h h

= glyn + 4y + 2] + g[yz +dys+yd + -+ g[yn-—ﬂ + d¥yp—1 + Yn)
h

= Elyn+4(y1+y3+"'+?}n~1]+2(yz+y-1+"'+yn-2)+yn]-

(7.74)

This formula is known as Simpson’s 1/3 composite rule for numerical integration.

Error in Simpson’s 1/3 rule

The error in this formula is
In

h
E = f(I)dI—gfyu+4y1 + 12|

o

(7.75)

Let the function f(z) be continuous in [z, z2] and possesses continuous derivatives
of all order. Also, let there exists a function F(z) in [z, z2], such that F'(z) = f(z)
Then

/: f(z) dz = [: F'(z)dz = F(z3) — F(xo)

¢ 2
= F(IU + 2}1) - F(In) = F(I[]} + QhF’(Iu) + (2;] F”(Iu]
h 3 " h 4 o h 5
+ 2 ) 4+ O iy 4 B ) 1
= 2hf(zo) + 2k f'(z0) + %fﬁ " (z0) + %h‘ " (zq)

4 5 piv
+Eh fzg) + - . (7.76)

.+ = F(xo)
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Again,
h h
Elyn +4dy + 2] = E[f(In) +4f(z1) + flz2)]
= 21f(w0) + 47@ + ) + (w0 + 20)]
2 3
= 5|tz +4{ @) + 1 (aw) + G170 + 517

4 ,
+L—!fn'(1"u) 4 } + {f(i"n) +2hf'(z0) + %f”(zu)

2h)3 2h)4 .,
+%fm(1(}) + %fﬂ (ID] + - }]
= 2hf(zo) + 2h f'(z0) + %h” F(z0) + %h“ F"(zo)
E 5 piv -
+igh* o)+ (7.77)
Using (7.76) and (7.77), equation (7.75) becomes,
Ko

4 5%,z . )
i L e 9 pry A e
E= (35— 15)W° (@) + - = — 5 £(6), (7.78)
where g < £ < 9.
This is the error in the interval [zp, T2].
The total error in composite formula is
h‘s iv iv iv
E= _%{f (zo) + U (z2) + - + [ (zn—2)}
RPn
—ﬁaf (€)
nh® _,
(where f™(€) is the maximum among f'(zp), f*(za), ..., " (zn-2))
_ (b—a), 4 iv
=g h're. (7.79)

Geometrical interpretation of Simpson’s 1/3 rule

In Simpson’s 1/3 rule, the curve y = f(x) is replaced by the second degree parabola pass-
ing through the points A{zg,yq), B(z1,y1) and C(zs, y3). Therefare, the area bounded
by the curve y = f(z), the ordinates z = =g,z = T3 and the z-axis is approximated to
the area bounded by the parabola ABC, the straight lines T = zg,r = T and r-axis,
i.e., the area of the shaded region ABCDEA.

Scanned with CamScanner



DIFFERENTIATION AND INTEGRATION 441

parabala

(@) Iy | T2

A% . é y = f(z)

Figure 7.3: Geometrical interpretation of Simpson’s 1/3 rule.

Example 7.11.1 Evaluate fg(&r — z%)dz, taking 6 intervals, by (i) Trapezoidal

rule, and (ii) Simpson’s 1/3 rule.

Solution. Heren=6,a=0,b= 3,y = f(z) = 2z — z°.

Su,h:b_ﬂ=ﬂ=0.5.

G
The tabulz?ted values of £ and y are shown below.

Ip X1 I I3 T4 Is5 Ig
x; : 0.0 0.5 1.0 1.5 20 25 3.0
yi : 0.0 0.5 1.0 0.75 0.0 -1.25 -3.0
Yo Y1 ¥2 Ys Y1 Y5  Us

(i) By Trapezoidal rule:

h
(22 —2?) dz = Elyu+2(y1 + Y2+ Y3+ ys + ys) + Y

= %[{1 +2(0.75 + 1.0 + 0.75 + 0 — 1.25) — 3.0] = —0.125.

(il) By Simpson'’s rule:

h
Jo(2z —2?) dz = Ely” +4(y1 + y3 + y5) + 2(y2 + y4) + vl

= %[ﬂ + 4(0.75 + 0.75 — 1.25) + 2(1.0 + 0.0) — 3.0]

= 20+1+2-3=0
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Alternative deduction of Simpson’s 1/3 rule

This rule can also be deduced by applying MVT of differential and of integral calculus.

Let f € Cfa,b] and z = lE-QHJ+b;ﬂz=}=‘+qz‘p=‘IT-H],Q= b;a.

Then when £ = a,b then z = -1, 1.

Therefare,
b 1
= T d:;[,‘: Z dZ
fﬂf( ) q/_lf(p+q)

1
—q /_ a(a)dz, where o() = [(p-+02)

= ] " gl)dz + / st =a [ l9(2) + g(==)d=

= q/ (= (7.80)

where 8(z) = g(z) + g(—2)

Note that ¢(0) = 29(0) = Qf(P = 2f(231), (1) = g(1)+9(-1) = f(a)+(b),¢'(0) =
0.

1 1
To prove / d(z)dz = (1 +¢)d(1) — ed(0) — / (z + ¢)¢'(z)dz, for arbitrary constant
0 0

C.

1 1 14e
./n @¢(z)dz = / a(z)d(z+¢c) = -/c. o(y —c)dy [where z + ¢ = )
e 14c
[J¢ ) ]H —_[ yo'(y — c)dy
‘ 1
= (L+0)p(1) —e6(0) = [ (z+ ¢/ ()= +0)
1
= (1+c)o(1) — cp(0) _.[n (z +¢)¢'(2)dz. (7.81)

Now, integrating (7.80) thrice

1
f B(=)dz = (1+ <)o (1) — cd(0) — fn (= + ©)¢'(=)dz
1

=(1+4c)o(1) — co(0) — [(% +cz+ cl)gb'(z]]; +/ﬂ (2—2 +ecz+ cl)qﬁ”(z}dz
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= (1+)8(1) = e6(0) = (G + e+ )#(1) +16/(0)
+[(§ + .‘322—2 +ec1z+ {:2) ¢"(z]]; - -/.ul (%3 + a::zQ—2 +cz+ (:2) @' (z)dz

= (1+c)é(1) — cg(0) - (% +eta)d(1)+ (% + 5+ +e)d"(1)
1 3 z2
—c2¢"(0) — fn (E teg ezt cQ) 3" (z)dz, (7.82)

where ¢y, ca, c3 are arbitrary constants and they are chosen in such a way that ¢'(1), ¢"(1)

and ¢"(0) vanish. Thus

1 1 ¢
§+c+c1=[}, E+§+c;+cz=0, and ¢ = 0.
. L 1 2
The solution of these equations is ¢g = 0,¢; = 5’ c= ~3
Hence
I= [1¢( )+ ¢(0) /1 (23 Z z)émf( )d:|
=13 L (G5 +5)¢" e
a i
= h[ {7@+1®)}+ f( )] / — 227 + 2)¢" (2)dz|
b—a
o34
h a+b
= s[f@+4r(32) + 0] + B
where
h ! h !
E= ——/ 2(z = 1)%¢"(2)dz = ——/ z(z — [gm (2) — g"(—2)]dz=
6 Jo 6 Jo
h ! 2 .
=-5 2(z = 1)%.[22¢"(£)]d=, —z<E<z
0
[by Lagrange’s MVT]
1
= —;—lgi” (51)] 22z —1)%dz [by MVT of integral calculus]
0
h 1 h .
- — w — = — (34 1.
397 3g =59 @) 0<&<
Again, g(z) = f(p+¢2),6"(2) = ' [ (p+ @t) = K f"(&), a < & < b.
Therefare,
h"‘ iv
= ——f (&).
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Hence,

/ ' flayiz = 3@+ ar(2E) + 1) - L)

Here, the first term is the value of the integration obtained from the Simpson’s 1/3
rule and the second term is its error.

Algorithm 7.4 (Simpson’s 1/3). This algorithm determines the value of
f:’ f(z) dz using Simpson's 1/3 rule.

Algorithm Simpson_One_Third
Input function f(z);
Read a, b, n; //the lower and upper limits and number of subintervals.//
Compute h = (b—a)/n;
Set sum = [f(a) — f(a + nh));
fori=1ton—1step 2 do
Compute sum = sum +4* f(a+ih) +2* f(e + (i + 1)h);
endfor;
Compute result = sum * h/3;
Print result;

end Simpson_One_Third.

Program 7.4
/* Program Simpson’s 1/3

Program to find the value of integration of a function
f(x) using Simpson’s 1/3 rule. Here we assume that f(x)=x"3.%*/
#include<stdio.h>
void main()
{
float f(float);
float a,b,h,sum;
int i,n;
printf("\nEnter the values of a, b ");
scanf ("%f %f",&a,&b);
printf("Enter the value of subintervals n ");
scanf ("%d",&n) ;
if (n¥%21=0) {
printf ("Number of subdivision should be even");
exit (0);
}
h=(b-a) /n;
sum=f (a)—f (a+n*h) ;
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" for(i=1;i<=n-1;i+=2)
sum+=4xf (a+ixh)+2xf (a+(i+1)*h);
sum*=h/3. ;

printf("Value of the integration is %f ",sum);
} /* main */

/#* definition of the function f(x) */
float f(float x)

{

return (x*x*x) ;

}

A sample of input/output:

Enter the values of a, b 0 1
Enter the value of subintervals n 100
Value of the integration is 0.250000

7.11.3 Simpson’s 3/8 rule

Simpson's 3/8 tule can be abtained by substituting n = 3 in (7.66). Note that the
differences higher than the third order do not exist here.

2 Ta 3 3 1
[ taz= [ sz = 3fl[yn+ S A+ a2+ —Asyu}
a g 2 4 8

3 3 1
= 3h [?}u + 5 —w0) + 32 — 21 +30) + S (ys — 3y2 + 3y - yu)]
3h
= ghﬁn + 3y + 3y2 + w3l (7.83)
This formula is known as Simpson’s 3/8 rule.

Now, the interval [a,#] is divided into n (divisible by 3) equal subintervals by the

points xp,xy,...,T, and the formula is applied ta each of the intervals.
Then

fI:" f(z)dz = -/:‘ f(I)dI+fI:G flz)dz + - + :_3 flz)dz
3h

= gi(yu +3y1 + 3y2 + y3) + (y3 + 3ys + 3ys + ws)
+--- 4 (yn—ﬁ + 3Yyn—2 + 3Yn—1 + yn}]

3h
= glo+3mrmtutystyrtto -2ty
+2(y3 +yst+yo+ -+ yn-—~3} + yn]- (784)
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This formula is known as Simpson’s 3/8 composite rule.

Note 7.11.2 This method is not so accurate as Simpson’s 1/3 rule. The error in this
3 [ M
formula is —%h."f”'(f), xp < € < T3,

7.11.4 Boole’s rule
Substituting n = 4 in (7.66). The equation (7.66) reduces to

b -
5.5 2
f f(z)dz = 4h|yo + 20y + S A%yq + ZA%yg + Ay,
a 3 3 90

b 2
= 4hlyo +2(y1 — wa) + g(yz — 2 + yo) + g{ya —3y2 + 31 — yo)

7
90( — dyz + 6y2 — dy1 + yo)]

= 4—5[73;4 + 32y3 + 12y2 + 32y1 + Tyo). (7.85)

This rule is known as Boole’s rule.

It can be shown that the error of this formula is —8! f“(.f) a<é<h

7.11.5 Weddle’s rule
To find Weddle's rule, substituting n = 6 in (7.66). Then

/bf(:z)d.:

_ﬁh[Jn'i"'f’tAyn+ Aﬁyn+4A3Ju+2 A%y JD+2 A Jn+—Aﬁ }

0 0 840

9 h
= 6h [Jn + 3Ayo+ AQJ[I +4A3%y, + A4yu+ 4‘—\-5.}0'1" AGJI]} —mﬁﬁ.ﬁj

h
If the sixth order difference is very small, then we may neglect the last term —— ASy,.
But, this rejection increases a negligible amount of error, though, it simplifies the inte-
gration formula. Then the above equation becomes

/ f(z)d

10 [Qnyﬂ + 60Ayg + 90A%y, + 80A%y, + 41A yg + 11A5y, + Ay]

= Efyn+5yl + Y2 + 6y3 + ya + 5y + yel- (7.86)

This formula is known as Weddle’s rule for numerical integration.

Scanned with CamScanner



DIFFERENTIATION AND INTEGRATION 447

Composite Weddle’s rule

In this rule, interval [a, b] is divided into n (divisible by 6) subintervals by the points
Tg,Z1,-..,Tn. Then

_/I:"f(z)d:r= :Bf(z)czz-ff:zf(z)dﬂ.._+f:ﬁ f()dz

[i]
3h
= 1_D[y”+51“ + y2 + 6y3 + ya + 5y + yo)
3h .
+E{yﬁ + 5y7 + yg + 6yo + y1o + Sy + Y12 + -+
3h
+1_0{yna—6 + 5yn——5 + Un—a + ﬁyn—ﬂ. + Yn—2 + 5yn-—l + yn]
3h .
= E[HU”F'J(?H +ys+yr+yn+ -+ Yn-s + Yn-1)

2t ys+ys+yo+ -+ Yn—a + yn_a)
+6(ys+yo+yis+- -+ Yn-3) +F2(ye + 12 + - - + Yn—s)].
(7.87)

The abave formula is known as Weddle’s composite rule.

By the technique used in trapezoidal and Simpson's 1/3 rules one can prove that the

BT
error in Weddle's rule is —mfm(f],:cg < £ < xg.

Degree of Precision

The degree of precision of a quadrature formula is a positive integer n such that the
error is zero for all polynomials of degree 7 < n, but it is non-zero for some polynomials
of degree n + 1.

The degree of precision of some quadrature formulae are given in Table 7.2.

Table 7.2: Degree of precision of some quadrature formulae.

Method Degree of precision
Trapezoidal 1
Simpson’s 1/3
Simpson’s 3/8
Boole's

Weddle's

ot Ov Lo W
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Comparison of Simpson’s 1/3 and Weddle’s rules

The Weddle's rule gives more accurate result than Simpson's 1/3 rule. But, Weddle's
rule has a major disadvantage that it requires the number of subdivisions (n) as a
multiple of six. In many cases, the valuc of h = !% (n is multiple of six) is not finite
in decimal representation. Tor these reasons, the values of xq,#,...,z, can not be
determined accurately and hence the values of y 1.e., yo,¥1,...,¥n become inaccurate.
In Simpson’s 1/3 rule, n, the number of subdivisions is even, so ane can take n as 10,
20 etc. and hence h is finite in decimal representation. Thus the values of xg, x1,..., 2,
and yg,¥1,.--,Yn can be computed correctly.

However, Weddle's rule should be used when Simpson’s 1/3 rule does not give the
desired accuracy.

7.12 Integration Based on Lagrange’s Interpolation

Let the function y = f(z) be known at the (n + 1) points zq,z1,...,z, of [a,b], these
points need not be equispaced.
The Lagrange's interpolation polynomial is
- w(x)
éx)=)_ T zwE) (7.88)

—(z - zi)w'(z;

where w(z) = (z —xo) - - (z — zp)

and ¢(z;) =y, =0,1,2,...,n
If the function f(x) is replaced by the polynomial ¢(z) then

/f d:c~/ ¢:r)d1_2f (z—z. o }y,d'.r (7.89)

The abave equation can be written as

h n
/ f(z)dr ~ Z Ciyi, (7.90)

where C; = / w(:r) i=0,1,2,...,n. (7.91)

(z — zi)w' ,)

It may be noted that the coefficients C; are independent of the choice of the function
f(z) for a given set of points.
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7.13 Newton-Cotes Integration Formulae (Closed type)

Let the interpolation points zq, 1, . .., T, be equispaced, i.e., z; = zg+ih,i=1,2,...,n.

Also,let 79 = a, 7, = b, h = (b—a)/nand y; = f(:),i = 0,1,2,...,n. Then the definite
b

integral f{z)dz can be determined on replacing f(z) by Lagrange's interpolation

leynomi;l ¢(z) and then the approximate integration formula is given by
b n
f f(z)dz =" Cuys, (7.92)
2 i=0
where C; are some constant cocfficients.
Now, the explicit expressions for C;'s are evaluated in the following.
The Lagrange's interpolation polynomial is

EL )i, (7.93)

where

(z —z0)(z —=1) - (2 — zica)(z — Zit1) - - (T — %)
@i w)@—2) @ m )@ w) @ e
Introducing =z = xg + sh. Then z — x; = (s — t)h and =; — x; = (i — 7)h. Therefore,
sh(s=1h - - (s—i—=1Dh(s—i+1h---(s—n)h
ih(i—Vh---(i—i—1h(i—i+1Dh---(i —n)h
(=1)"" s(s—1)(s=2)---(s—n)

L,‘(I] =

L,‘(I) =

T im—1) =) (7.95)
Then (7.92) becomes
[ tayas = >-cw
1"t s(s—1)(s —2 s—n i
f Zz(‘n—r}' : J((.s—]z) . )yde=ZCiyf
i=0
4r. y DT s(s=1)(s=2) ”.(S_n)dr}? ;= 3 Ciyi. (7.96)
2{/ ifn 1) =7 w=3_Cu
Now, comparing both sides to find the expression for Cj in the form
.'L'n( 11'1:3{3_1)(5_ J "(S—T.'.}
Ci= / AT E— G- dr
)" th s{s—l)(_g_‘)] (s—n)
= z!{n —1)! [D (s —1) ds, (7.97)
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i=0,1,2,...,n and = = x5 + sh.

-—a
Since h = , substituting

Ci = (b—a)H;, (7.98)

where

_ 1=y f"""{s‘1)(5‘21'”(5'”)ds,f=o,1,2,...,n. (7.99)
0

nil(n —1)! (s—1)

These coefficients H; are called Cotes coefficients.
Then the integration formula (7.92) becomes

b n
/ flz)dz = (b—a) Y Huy, (7.100)
a i=0

where H;’s are given by (7.99).

Note 7.13.1 The cotes coefficients H;’s do not depend on the function f(z).

7.13.1 Some results on Cotes coefficients
n
) > Ci=(b-a).
i=0

n
By the property of Lagrangian functions, Z w(z)
i

(z — z;)w'(zi) =d

That is, £ @ Il]ur’('r, ————dzx —f dz = (b—a). (7.101)

Again,
W(I n-is(s—1)(s =2)--- (s —n)
/ (z — zi)w dz_zf h(-1) i!(n—i)!{s—i] ds

= Z C;. (7.102)

Hence from (7.101) and (7.102),

i Ci=b-a. (7.103)
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(i) Y Hi=1
1=0

From the relation (7.98),

Ci - (b — GJH,;
ar, ng = (b—ﬂ]iH,;
i=0 i=0

or, (b—a) = (b—a) Z H;. [using (7.103)]

i=0

Hence,

n
> Hi=1
i=0
That is, sum of cotes coefficients is one.

(IHJ Ci = Cﬂ—i-
From the definition of Cj, one can find

o (=1)h [ms(s=1)(s—=2)---(s—mn)
Coi /

s—(n—1)

T (n—1)l!

Substituting f = n — s, we obtain

(7.104)

ds.

Coi= _(=1)'R(=1)" /“ He—1)(t=2) - (t-m)

il(n — i)!

_ (-1)"h /” s(s=1)(s—2)---(s—mn)
0

T il(n—1)!
Hence,

Ci' = Cn——i-

(i\'} Hi = Hn._,'.
Multiplying (7.105) by (b — a) and hence obtain

Hi - Hnui-

s—1

dt = Cj.

(7.105)

(7.106)
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7.13.2 Deduction of quadrature formulae
Trapezoidal rule
Substituting n = 1 in (7.100), we get

b 1
/ f(x)dz = (b—a) Y Hiyi = (b — a)(Hoyo + Hiy).
a i—0

Now Hy and H, are obtained from (7.99) by substituting < = 0 and 1. Therefore,

1 (e 1
Hn=—/ Md.s:iaﬂdHl:deS:i.
4] 2 0 2

s
Here, h=(b—a)/n=b—afor n=1.

b —a
chcc,/ f(z)dz = (b

2 J(yn+y1) = E(?}n+!,-'1]-

2

Simpson’s 1/3 rule
1
G
1 /2 2 11 [? 1
Hl=___[ s(s—2)ds= -, Hy —_-[ s(s—1)ds = _.
2 i] 3 0

T 22 6
In this case h = (b—a)/2.
Hence equation (7.100) gives the following formula.

11 2
Forn=2 Hy=—-.-f (s—1)(s—2)ds=
22 J,

b 2
[ e ==Y Higi = (6= a)(FHopo + Hipn + Haye)
a i=0

h
—= §(yu + 4dy1 + ya2).

Weddle’s rule
To deduce the Weddle’s rule, n = 6 is substituted in (7.100).

b 6
[ @z = -y Ha
a i=0

= Gh(Hyyo + Hiyy + Hays + Hays + Hyys + Hsys + Hgy)
= 6h[Ho(yo + ys) + Hi(vr + ys) + Ha(y2 + v4) + Hays).

To find the values of H;’s one may use the result H; = H,_;. Also the value of H;
can be obtained by the formula
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Hy=1-(Ho+ Hy+ Hy+ Hy + H5 + Hg) = 1 — 2(Ho + H, + Ha).

1 s(s—1)(s—2)---(s—0) 41

J = —
Now, Hy = 5o / - ds 310°

216 27 272
imi \ ——— H = — H- = —,
Similarly, H, 820" 2= 530" 8 = 310
Hence,

/f(:: = 140 [4]_J¢1+21[JJ:| +2T12+272y3+2Tys +216y5 +41y). (7.107)

Again, we know that ASyy = yo — Gy + 15y — 20y3 + 15y — Gy,—-, + ya,
ie., %[yu — Gy + 1612 — 20y + 15y — 6ys + ys) — “uArm} =

Adding left hand side of above identity (as it is zero) to the nght hand side of (7.107).
After simplification the equation (7.107) finally reduces to

]
3h h
/ J(x)dr = 1—(;[!.-‘0 + 5y + y2 + Gys + ya + 5ys + we) — mﬁx“

The first term is the well known Weddle's rule and the last term is the error in
addition to the truncation error.

Table 7.3: Weights of Newton-Cotes integration rule for different n. 6@\
: 0(\
T 1
13 3
2 1 4 1
=3 3 3 de
3 9 49 3
3% % 8§ % ’a
g 4 61 24 G4 __ é
5 1 16 6
5 95 475 250 250 3Ziw9% d
25K 288 288 258
G AL 216 27 m a1
140 140 140 140 10 140
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