2-12. Equation of motion of Matter Waves.

(i) Time-independent. Schroedinger equation. The non-
dissipation of the wave-pack

. : et of the material particle has been
explained by assuming the necessity of the guiding wave obeying

Schroedinger wave equation which we shall derive here.

| Con_sider a system of stationary waves to be associated with
the particle, Let (x, y, z) be the co-ordinates of the particle and
y the wave displacement for the de Broglic waves at any time 7.

Then the differential equation of the wave motion in three dimen-
sions can be written in classical way as

% 0% P _1 0% 20
gx* - gyt ert wralt’
where u is the wave velocity.

The solution of equation (1) gives ¢ as a periodic displace-
ment in terms of time, i.e.,

b (X, ¥, 2, 1)=1q (%, ¥, 2) €%, @
where ¢, is the amplitude at the point consjdered. It is function
of (x, y, 2), i.e., the position r and not of time ¢, where

r=ix+jyt+kz.
The equation (2) may be expressed as

g (r, t)=g (r) e --(3)
Differentiating equation (3) twice with respect to ¢, we get
Pty ()
= — .
Substituting this in equation (1), :ve get
oy a9 g .(4)
tap e @
But w=21V
2mcu
_."".:——i- )
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w 2 "l b

5L, il (
2 2 ...(6)
% % Y __ e !
Also axg",l_a—)_,'a—}— 822 v ll,

2 being Laplacian operator.
Using (5) and (6) equation (4) becomes -
42
V%H-—A—z— p=0.
So far we have not introduced wave mechanical concept and

: ; ave
so the treatment is general. For introducing the concept of w
mechanics we must put from de Broglie equation

Gk ®
T mv
Substituting this in equation (7), we get
4cim2v?

If E and ¥ are the total and potential energies of the particle
respectively, then its kinetic energy mv?® is given by

tmvi=E—V,
which gives m2vi=2m (E—V).
Substituting this in equation (9), we get |
8nZm
VY+ e (E—V) $=0 ...(10)

The above equation is called Schroedinger time independent.
wave equation. The quantity ¢ is usually referred as wave function.
Let us now substitute in equation (10),
h
h=§7—t. ...(11)

Then the Schroedinger time-independent wave equation, in
usually used form, may be written as

2m-

V3435 (E—V) ¢=0. ..(12)

(ii) Schroedinger equation for a free particle. For a free

particle V=0 ; therefore if we put ¥'=0 in equation (12), it will
become the Schroedinger equation for a free pacr%ticle, »i.c(e., )

2mE
Vi +=3 9=0. ..(13)

(iii) Time-dependent Schroedinger Equation.

Time-dependent Schroedinger equati ;
eliminating E from equation (1%)‘ quation may be obtained by

Differentiating equation (3), with respect to ¢, we get
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)
= i (£) et

=—1i (27v) g, (r) e—*? (since w=2mv)
= —2wivi using (3)
=—%§i§ ¢ (since E=14, 5 v=h£)
B e :
s ¢>< : using (11)
which gives  Ej=ih gf’ o ..(14)

Substituting value of Esla from above equation in (12), we get

vegy 2 nz [zn g V¢]

or Vza[:-—— [ _g"b Vq;]
ie. ~5 v2¢+m—m i .(15)

This equation contams the time and hence is called time
dependent Schroedinger equation.

Equation (15) may be written as
0 __ o
(~35 V2 +0) p=n 2. ..(16)

 RERETT i
The operator (;—n- V’—I—V) is called Hamiltonian and is

represented by H ; while operator ih9/as operating on ¢, gives E
which may be seen from (14). Thus equation (16) may be written

s Hy=Ep. ..(17)
The above forms of the Schroedinger’s equation descnbe the
motion of a non-relatzwstzc materzal particle.
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217. Expe:ctation Values of Dynamical Quantities.
| According to Born the wave-function § has probabilistic
interpretation, therefore it is essential to calculate the average or
expectation value of any dynamical quantity defined by the wave-
function. In physics such dynamical quantities are space-co-ordi-
nates, momenta and energy of the system.

The average or expectation value of a dynamical quantity is the
mechanical expectation for the result of a single measurement.

Or

It may be defined as the average of the result af a large number
of measurenients on independent systems.

The expectation value of any quantity f(r) which depends
upon position, for normalised wave-function may be written as

Say=[ P, 01 @) dr
frenrmeana A1)

4
This is equivalent to the following three expressions :

{X )= . P* x d‘r]

=\ v ypar l> )
(ZH= | ¥ zp er

where (x), {¥)> and {z) are the expectation values of the co-ordi-
nates x, y and z of the particle respectively.

The expectation value of the potential energy, which is also
the function of position, is written as

(V)=I V(1) P(r, 1) dr
___I y* (r, 1) V(r, t) ¢ (r, t) dr. ...(4) |

So far we have only considered the expectation values of t}xe
qaantities which depend upon position and no other quantities
which are of dyna nical interest, such as momentum and energy.
The expectation value of these quantities may be found by using
the ccrresponding differential operator.

Or.e form of Schroedinger’s equation is

in 2-;‘--5,0.
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so that the total energy can be represented by differential opera-
tor that acts on the wave-function ¥, i.e.

.
E=in g 1%
we have :
total energy=Kkinetic energy- potential energy
: S ok
i.e. E= 2m+ V,
2
so that (E‘)=(%71 YLV, ...(6)
Also we have from eqn. (16) and (17) of section 2-2.
et ‘h2 2
h2
so that <E>=<_§r_n VDD, )

Comparing (6) and (7), we get
ha
ps_____havz.:iT_ Al

so that p=?— V=—ihy. ...(3)

This egn. syggests that the momentum can be represented by

differential operator (—ih V).
We can, now, write{;’the expectation values of momentum and
energy using the corresponding operators. The average value of

energy, using eqn. (5), is written as
(Ey= I it % it ] g g% %, .09
The average or expectation value of momentum, using eqn.
(8) is written as

<p>=j P* (—iMV) § dr

—=—it ] & V¢ dr. ...(10)

This equation is equivalent to three component equations
given by
<p‘>=—ih *' % d‘l",.1

b g

(pey=—in | ¢*§$ [ a1

and py=—in [ go 2L dr,

where {p.), {Py), {P,) are the expectation values of the compo-
nents of the momentum along X, Y and Z axes respectively.
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It is to noted that the above formulae of expection values only
hold if the wave-function  is properly normalised : otherwise we
have the definition of expectation value of any quantity f to be

. LT
o
§ o b dr

Therefore if the wave function is not normalised we have to
use the definition given by eqn. (12) and the equations (1), (2),
(3), (4), (9) and (11) will be modified accordingly. |

Moreover if the expectation values are to defined using opera-

tors, the integrand will consist of the operator operating on ys; multi-
plied on the left by y*.
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