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.Chapter 1 5

Maxwell’s Equations and
Electromagnetic Waves

15.1 Introduction

—

So far in our study of electricity and magnetism we have encountered the following
equations governing the electric and magnetic fiel

()
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V.-E= —p (Gauss’s law in electrostatics) (15.1-1
V- -B =0 (Gauss’s law in magnetostatics 15.1-2
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V x H=J (Ampere’s law)

Faraday’s law shows that a time varying magnetic field gives rise to an electric field.
From symmetry consideration we may expect that a time varying electrie field can create
a magnetic field. In fact Maxwell proved- it-to be true. He modified the above field
equations and removed the incompleteness of the interdependence of the field eguations.
The equations thus obtained are called M azwell’s equations, which govern the behaviour
of the classical electromagnetic field as we believe it todayv.

In this chapter we shall consider the formulation of the Maxwell's equations and the
eleCtrOIn?umetlc wave phenomena predicted by these equations.
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15.2  Generalisation of Ampere’s Law and the
Concept of Displacement Current

Maxwell pointed out that the Eqgs. (15.1-1)-(15.1-4), representing the state of electro.
magnetism before Maxwell. are not consistent. As the divergence of curl of any vector
Is always zero, by taking divergence of Eq. (15.1-4) we find that V - J = 0. For steady
currents this is true. But for time varying cases the continuity equation, namely,

Jp =

indicates that V - J is not zero in general.

There is another way to prove the inconsistency of Ampere’s law as expressed by the
Eq. (15.1-4). Suppose we are in the process of charging a capacitor by a constant current
I as shown in Fig 15.2-1. The integral form of Ampere’s law is

fﬁ-dfz/f-dsd:.f, (15.2-1)
E " JS

where [ is the total current through the surface S whose periphery is the closed curve C.
Now S may or may not be chosen to intersect the wire carrying current. In Fig 15.2-1, the

surface S1 chosen in the plane of the curve C intersects the wire but the balloon-shaped
surface So does not intersect the wire. Thus,

j{ H-dl=[ j-dS5=1, (15.2-2)
C S1
and }f H-dl= | J-d§=0. (15.2-3)
& ' S
S,

& ——
Xk - H—
-1
r_? o L Co 2E Fig 15.2-1: Testing of Ampere’s law in
“alerEbE T >t presence of a capacitor.

Obviously these equations are contradictory. Equation (15.2-2) is expected to b.e
correct as it does not involve new feature namely the capacitor, while Eq. (15.2-3) 18
incorrect and requires consideration of the capacitor.

When the capacitor is being charged, charges are piling on the plates of the capacitoz
This causes the charge density and associated electric field to vary with time. For sucC
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time varying fields Ampere’s circuita] |
with the equation of continuity, Max
assumed that the definition of curren
J + Ja, where Jj is to be so chogen

aw requires modification so as to make it consistent
well investigated the situation mathematically and
t density .J is incomplete and we must replace it by
as to make the total current divergenceless, i.e.,

6-(f+j:1)=0 or 6'-]:1‘-—6.j'=0p 9 —"-‘) - 9D

ot
This gives

= 9D
i =, O 15.2-4
SY : )

Therefore, Ampere’s law (15.1-4) modifies to
Vx =iy %_l;' (15.2-5)

Note that this generalised form of Ampere’s law makes V - (6 x H > = 0 always.

Also, it does not chainge anything in so far as fields do not vary with time. For if E
is steady, we still have V x H = .J as Ampere said. The quantity 9D /0t introduced by
Maxwell in the Ampere’s law is known as displacement current density. It is a current
in the sense that it can produce a magnetic field. As it is not linked with the motion
of free charges, it has none of the other properties of current. It can have a finite value
even in vacuum, where there are no charges at all. It cannot be detected directly but its
existence is confirmed indirectly by the electromagnetic theory of light.

15.3 Maxwell’s Equations

There are four fundamental equations of electromagnetism known as Mazwell’s equations.

These equations represent the generalisation of experimental observations. In SJ units
the equations are

V-D=p (15.3-1)

V-B=0 (15.3-2)
. 0B

= o 98 15.3-3

VxE 5 | ( )

X7 seofl = Tk %?, (15.3-4)

Where and D a;‘e electric field vectors, B and H are maimgnetilc’: field .vector;,‘,ﬁp is thi
€e charge density and 7 is the free current density. I?Jquatmn (10.3-1()1'1s tlhe i oirlzn ri:.
™ of Gauss’s law in electrostatics and Eq. (15.3-2) 1fs 1:s‘he ZOI;'ZS{);IVI ;?Eleix :;1 o ngetic

t()Statics, E i s the differential form of Iaraaa

: - Equation (15.3-3) is the e o

duction hillquation((l 5.3-4) is the Maxwell’s modification of Ampere’s law
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Maxwell’s equations are supplemented by the following two constitutive relations

D=¢E and B= uH, (15.3-5)
where € is the permittivity and y the permeability of surrounding medium.

Properties of Maxwell’s equations

1. M azwell’s equations are linear. It is directly related to the principle of SUperposi-
tion. Thus, if any two fields satisfy Maxwell’s equations their sum will also

satisf
these equations. '
2 Maanpell s equations include the equation of continuity. Taking the divergence of
the Eq. (15.3-4) we get. ‘
I NPT,
VTt 2 (v : D) -
+ T 0
Now using Eq. (15.3-1) we get the equation of continuity,
, 0 - -
e +V-J=0

Thus, we conclude that Maxwell’s equations are consistent with the local conser-
vation of charge.

3. Mazwell’s equations are relativistic invariants. That is, the form of the equations

remains unchanged under Lorentz transformations. Thus, Maxwell’s equations are
correct relativistic equations. '

4. Mazwell’s equations are not symmetric with respect to electric and magnetic fields.
This is due to the fact that electric charges exist in nature and magnetic charges as

far as it is known at present, do not exist. Maxwell’s equations take up symmetric
form in free space with p =0 and J = 0.

5. Mazwell’s equations predict the existence of electromagnetic waves. Any time var-
ation of a magnetic field induces an electric field. Again a variation of electric field, |
in its turn, induces a magnetic field. This continuous interconversion or interac”
tion of the fields preserves them and causes an electromagnetic wave pro.pa'gatlﬂ g
in space. It was confirmed by Hertz’s experiment on electromagnetic radiation.

15.4 Conservation of Electromagnetic Energy
—Poynting’s Theorem

) . netic
Poynting’s theorem is a statement of conservation of energy applied to electroil.l:%v e
fields. It helps to interpret the flow of energy with the motion of electromagnet!

=
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in space. To establish the theorem let us start from the Maxwell’s Fqs. (15.3-3) and

(15:3-4). Now  Ugivg Vecknr tde-bty; ’{;Q\ v ﬁ); Be TuA) - A (910

V. (1 X /‘1’) = H. (@" X /) .y (\/ X /i)

o OB . o . 0D
= -H s . J-F.ZZ 15.4-1
gt B I-E-, (16.4-1)

For any linear medium D = ek2 and B = jil{. So we can rewrite Eq. (15.4-1) as

= = = 0fls = 12 o S
V-(Ex11> =—— (zE-B+=B-B)-E.J 15.4-2
T (2 "3 ) (15.4-2)
Integrating this equation over a fixed volume V bounded by a closed surface S and
applying Gauss’s divergence theorem we get

I

j{(Exﬁ)-dS’ e 1(1’3‘-13“?-1;7) dv—/LT‘-fdv
S dt Jy 2 %

or _i/l(ﬁ.mﬁ.ﬁ) dvz/ﬁ.fdw?{(ﬁxﬁ).dg (15.4-3)
dt V2 JV S

To understand. the physical significance of Eq. (15.4-3) let us interpret each term in
it. Suppose we have some charge and current configuration which at time ¢ produces the
E and B fields. The rate of work done by the electromagnetic forces on an element of
charge dqg = pdV is given by

dw ~ =
— = d (7+6XB)-6
dt I

= dgE-T=FE -§(pdV)=E- JdV,

where ¥ is the velocity of the charge element and J = p7.

/ E.Jdv

1

in Eq. (15.4-3) represents the rate of doing work on the charges in volume V by the
electromagnetic field.

We know that %E .D is the electrostatic energy density and %Eﬁ 1s the magnetostatic
energy density. Hence,

Thus, the term

%(E‘-5+E.ﬁ)

may be interprefed as the electromagnetic energy density.

£
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Thus, the term

"};‘li /f%(ﬁ-ﬁ-yﬁ-'ﬁ) %
JV

in Eq. (15.4-3) represents the rate at which the total electromagnetic energy in volume
V is decreasing. Physical meaning of the term

jé(l:fxﬁ)-db_"

now follows from the principle of conservation of energy. The rate of decrease of elec-
tromagnetic field energy within a certain volume is equal to the rate of work done by the
field on the charges inside the given volume plus the rate of outflow of electromagnetic
energy through the surface bounding the volume. This statement is known as Poynting’

theorem. So the term
j! (BExi)-d8
S

represents the rate of flow of electromagnetic energy outward through the surface 3. The
vector § = E X H represents the amount of electromagnetic energy flowing out normally
through unit area per unit time. This vector § is known as Poynting’s vector.

)
J
7
p
=]
3
:
]
)
5

Differential form of Poynting’s theorem

The work done by the electromagnetic field on the charges increcases their mechanical
energy. If we denote the mechanical encrgy density by uys then we can write %ﬁi = rate
of work done on charges per unit volume = E - J.

—

Now denoting the electromagnetic energy density % (I—f D+ 1. H) by Uem We can
write Eq. (15.4-2) in the following form:

_(UM I ucm) + 6 8§ =0. (15.4-4)

This is the differential form of Poynting’s theorem. This has the same form as
the ijuath.n of continuity expressing the conservation of charge, with the total energy
density taking the place of charge density p and § taking the place of current density J.

Thelﬁefore, from analogy with J the Poyniting’s vector can be interpreted as the energy
flowing through unit areq per unit time.
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Wave Equation ;
15.5 q. on 1n F\ree Space
. here there i
In free space, W 1S no charge (p = . - _
ake the following form: (p= 0) or current (‘] = 0) Maxwell’s equations
V-E=0 (15.5-1)
V-H=0 (15.5-2)
S ) |
VXE= THoSo (15.5-3)
= = OF
\Y, X H = ¢ —— =
€0 (15.5-4)
Taking curl of Eq. (15.5-3) we get
ﬁ(vé)—v‘?ﬁj:_ S (s, p
o5t (v x )
= &2E
or —V2E = Ty [Using Egs. (15.5-1) and (15.5-4)]
- 2 2
V2E - Goltg—f; =0. (15.5-5)

Similarly taking curl of Eq. (15.5-4) and using Eqs. (15.5-2) and (15.5-3) we can get

= 62H
VZH - €otio = 0. (15.5-6)

Thus, both F and H satisfy the well-known wave equation. Both E and H propagate
in free space in the form of a wave. Comparing with the standard wave equation

: 1 0% -
V) — = = 15.5-7
v c® Ot? 0 ( )

we can ﬁﬁd that the velocity of propagation of electromagnetic wave is

cz,__.l__.,:,«3><108m/s,

€0k .
e. This indicates that the light is an

Which is precisely the speed of light in free spac
eleCtFOmagngtic wave.

Plane wave solutions

: lutions:

The simplest solution of Eqs. (15,5-5) and (15.5-6) are plane wave solutions
= —t T j iv:'-."‘ t 5-

B (7 1) = BoiFT) and A (7, 8) = Hoe F7), (15.5-8)

7 t) = Lo

|

V'-):)p_’ _g__e__a —-jw.
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i 4
ro consbants 1 space nidd Lhmes gy

where Ky and Hy are complex amplitudes, which n
Gion of the wave, i dafined uy

the wavcvector determining the dircction ol propaga
21 21, w ,
et LTl L (15.5.9)
A ¢ 4

where 1 is the unit vector along the direction ol propagation.

l‘: —

o g -t —p
Relative directions of B, H and k

L s 2 J 3N 4 nl fn.° ' ' |
Substituting the solutions (15.5-8) in s, (16.5-1) and (15.5-2) we get

oo =0 and k-H=0. (15.5-10)

Thus, F and i arce both perpendicular to the direction of propagation vector ke "I'hiy

implies that clectromagnelic waves are lransverse in nature,
Again substituting the solutions (156.5-8) in I5gs. (15.5-3) and (15.5-4) we get

1A x [} = —qu (-—_’jwl.fl') or fi x [f = /l,(,w.ldl’ (16.5-11)
and /IT x H = e (—‘jw]j> or Jox [ = ~c(,w,l,7f. (15.5-12)

12) implies that E is perpendicular to both A and H. Thus, the ficld vectors [ and [ are
mutually perpendicular and also they are perpendicular to the. dircelion of propagotion
hnd - - - . p .

L. The vectors £, H and k form a set of orthogonal vectors, which constitutes a right-

Equation (15.5-11) implies that I is perpendicular to both Jo and f2. Bquation (15.5-

handed system in that order.

Relative phase of F and H
Substituting the solutions (15.5-8) in Eq. (15.5-5) or (15.5-6) we get

k® = Golblow2 , (15.5-13)
f Thus, in free space k is a real quantity and hence, Eq. (15.5-11) implies that i and
H are in phase.

Wave impedance

The ratio of the magnitudes of E and H is

: i
| fow l i .
‘ 'I === £ [Using equation (15.5-13)] (15.5-14)

‘tfh

Zo =

ot

€0

Live.. e R e P :
Here operator V is equivalent to jk while Q_ is equivalent to —-jw.

ot
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This quantity Zo has the dimensions of impedanee and is known as the wave impedance

i free space. Its value is 376.6 .

Poynting’s vector

The Poynting’s vector for the plane electromagnetic wave in free space is

N T W
s=ExH = —Ex(kxE) [Using Eq. (15.5-11)]

How
1 [o/= = ) o
= m[k(EE)—E(Ek)}
E? . E?
- k=g (15.5-15)

Thus, the energy flow is in the direction of wave propagation.
Since E is normal to k, from Eq. (15.5-11) we can write in terms of magnitude,

kE = powH or /eE=/pH or legE? = fuoH>. (15.5-16)

This shows that in case of electromagnetic waves in free space electromagnetic enerqy
is equally shared between electric and magnetic fields. :

Total electromagnetic energy density is

w=LeE? + SuoH® = coE”. (15.5-17)

So Eq. (15.5-15) can also be written as
§ = ucn, '(15.5-18)

where ¢ = 1//po€0 éz'w/k is the speed of the wave.
Thus, Poynting’s vector equals the energy density (v) times the velocity of the wave.

This means that the energy a§sociatgd with the wave propagates with the same velocity
with which the feld vectors E and H propagate.

”

Time average Poynting’s vector

ly used the complex solutions for the field vectors E and H with

the understanding that the actual quantities are given by the real parts of the complex

non-linear in the fields it is essential to take real parts of the fields

solutions. As § 18 2
before multiplying them. Thus, the real Poynting’s vector §= ReE x ReH.

Now

So far we have free

ReE = % (E + E"*) and ReH = % (ﬁ + ﬁ.*) ,

whered indicates complex conjugate. 'é S Bt ) Er
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Therefore, real Poynting’s vector

§=-

i[Exﬁ+E*xﬁ*+E*xﬁ+EXﬁ*]

ntative values at 7 = 0. Now

ay calculate the represe
a weriod T' = om /w we find

As the origin is arbitrary we€ me
writing E = Epe 7%t and H = Hge 7@ and averaging over
that the first two terms on the right-hand side becomes Z€ro, since

T .
/ et2wtdt = 0.
0

Thus, the time average Poynting’s vector
] — 1Re (E y fj) — 1Re [E’ X ﬁ] . (15.5-19)

(é)zé[ﬁxﬁ*—i—ﬁ*xﬁ
nting’s vector is called the intensity of

The magnitude of the time average of the Poy

radiation (I). Thus, the intensity
H,
Eo 20 _ B X Hrms (15.5-20)

—_—

[=|(&)]|=%1EHo=—7"

I (d) l 50410 \/-2- \/5
Similarly, we can show that the time average energy density
eoFf - B) [from Eq. (15.5-17)]
eoREE . E* = %eoEg = GOE%ms-

—

(u) = (€E?) =

—_—
P

(15.5-21)

[

From Eq. (15.5-16) we note that \/€0Erms = VEoH rms- Hence, from (15.5-20) and

(15.5-21) we can write
I 1 Hms 1
=== =c or I=(u)c (15.5-22)

Spherical wave solutions

| ture of E and H it is very difficult to find the spherical Wav¢
solutions of the wave Egs. (15.5-5) and (15.5-6). However, as each component of E
and H vectors satisfies the scalar wave Eq. (15.5-7), some important informations about
Spheri(.:al waves can be obtained by solving the scalar wave Eq. (15.5-7) with the as
sumption that the field parameter 1 depends only on the radial coordinate  of spherica

coordinate system. Then Eq. (15.5-7) reduces to

10 (200 _1 8%y
~orior \ or =

i

Because of the vector nat

7.9

.,
42 of

fud § - o
‘r’ :
N ey ke
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Putting ¥ = W' e we get

o’ ¢? 01
This equation is of the form of a one dimensional wave equation. Hence, its general

golution may be written as
W o= fi(ct =)+ falct +7)
. I 4 1
or P = ;/1(075 —-7)+ ;;fz(ct +7). (15.5-23)

First term on the right-hand side of Eq. (15.5-23) represents & spherical wave di-
verging from the origin of the coordinate system with a constant speed ¢ and having an
arbitrary functional form. The second term represents a similar wave converging to the

“origin. A diverging spherical harmonic wave can be represented by

1 1.

(r,t) = A = cos(kr — wt) + B=sin(kr — wt). (15.5-24)
r -

the amplitude of a spherical wave falls as 1/r and
ves on. The wavefronts of such waves are concentric
small portion of the wavefront may be

Note that unlike plane waves,
therchy changing its profile as it mo
spheres. For enough away from the source a

considered as a portion of a plane wave.

15.6 Plane Electromagnetic Waves
in an Isotropic Dielectric Medium

ar, homogenecous and isotropic dielectric (nonconducting) medium

Let us consider a line
axwell’s equations, 1 this case, take the following form:

with no free charge. M

V- E=0 (15.6-1)
.. [ =0 (15.6-2)
S x B of
=S (15.6-3)
5 o OF
Vx il = e (15.6-4)
Taking curl of Eid. (15.6-3) and using Eq. (15.6-4) we get
5 (. i 2 0 (= & 52E
G (9-E) - VE = - .
( o (V X H) T
Using Eq. (16.6-1) we get
95 ?E . ;
V2E - e¢p—=5 = 0. (15.6-5) .
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SOLVED PROBLEMS!

pare the value of conduction and displacement current densities at fre-
1 - ~ra 100\ T 1 i
guencies 100 bz ard 100 - 1z OIMIMENt On the Tesult.
solution : Conduction current density J. =0k and displacement current density
- dD oE
d= 5 — €457
ot gt
Assumning harmonic variation E ~ Ege™ ! we can write
]r = &4 E % 2
max |

7 T oo B0 £ 3.854x 1071 x 27 X
| lmax
= 2248
For 100 MHz, -
e 2248 -
_ T =2 =0.002248
A 10°
tJd
| lmax

medium behaves like a conductor

+ion current dominates and the
hence, the medium behaves like

At 100 Hz the conduc e
but at 100 MHz the displacement current dominates and

a diclectric.
¢ any point in a medium of conductivity

me constant €/o. Find this characteris-
% 107(92-m) ! and dielectric constant

Problem 2. Show that an excess charge placed a
o and permittivity € decays exponentiolly with a ti
tic time for o conductor having conductivity & = 3
=K =1.

Solution : We have the Maxwell’s equation

—

VxH=J+ a5 Ty
Taking divergence we get

S o @fun E p
i O — = = U'—‘}"‘_
v, L+8t(V D) 0 or -S4
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The wavelenath of the wave in the conductor is

. Skin depth § = \./2:x.

TR .
(22) Let us write

Now putting

Bz _ 1
Ey 100
we get

’\C EO _— &_ 111 100 = ()73 /\(,--

) » (:) -

2T ¥ 2/) i
(i) The required wavelength
D . 9
-yl “
\C = — =27 /——
Q \/ wio
/ 2
— Qe - m

"V X 100 x 47 x 107 % 5.8 < 107
= 415%x107%m

and the propagation speed

w w 27 x 109 W
U= == o= X A = 5 X 4.15 x 107 ms™! = 415 ms~!.
/ 4y

j{oblenl 13. The clectric field associated with an clectromagnetic wave is
E = 2Eycos(kz — wt) + §Ey sin(kz — wt),

- & > Ty ) ’
where Eqg is a constant. Find the corresponding magnetic field H and the Poynting®

vector §.

Solution: We know that S

Here k = 3k.

~

H = ;;;5 X [ Ey cos(kz — wt) + §Eg sin(kz — wt)]
kEy kE,
_ /A-'_— b Iy ‘: s o T : 0 31 '+
g ” cos(kz — wt) "(NT sin(kz — wt).
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‘
[Poynbing v ot

T L .
M I~ Il Rl 1 [ 2 p ;f“z.
2 e \CORTNRZ ¢ atri®l o T S At
fiu ' (kz = wt) + sin“(kz — wt)] = Pphandry
j o

i e it
T TOELETL
>
-
- b

woblom 16, An cleclromagnets

l H,M(l 0 ; [ An eleclromagnetic wave 16 propagating through o nonconduct
\ \ . g '|'. . / :,, " ,‘ PO r ' € ’ . ' & v: WA BT
charactel I’ i by pt I/IMU/.UM;/ Dl and 7,(:/,.”)‘(:0,/”/7_,’:{/ 2//.0‘ The maqnetir; ﬁf:/:/.{ p—

the wave 1
I = 2 cos(3z — wt) A/m,
where = s inonelre, [ind the value of w. Also find the clectric field casociaien Wil

wave. Whal s the direction of propugation of the -

Solution : Speed of the wave i4 given by

w ]

1) T e FE e

k \//'/',7,

/e 3 4
= = c

Or W = —= = -
\ﬂl.( V20 - Do /10
‘l
28 10%rad/s = 2.846 « 10% rad/s.
V10 / /

o Lhe equation
PR ) 2,
A\ H=—
ot
wo get | L .
jkx H= —jwek.
) v i k2
L m e 2 cos(3z — wt)
e ' w €W

9.9 . cos(3z — wt)

= ARk % 10712 x 2.846 % 107
_ #4762 cos(3z — 2.846 X 10°t) V/m

Tho constant phase planes are

¢=32— wt = constant.

iah ; Vel 1E L ieular to these planes hence
The direction of propagation is pcrpmdmular P : ;

L.0., tho wave propagates along + z-direction




