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This indicates that the energy flow is in the dir(?cti?n t0f W:":f%‘;gii?é‘;n- Since B
is perpendicular to k, from Eq. (15.6-12) we can write in terms ’

kE = ywH or eE = /pH [Using Eq. (15.6-14)]
or leE*=1uH® (15-6-18)

This shows that in case of electromagnetic waves in z’gotmpic dielectric electromg,.
netic energy is equally shared between electm"c and magnetic fields.

Total électromagnetic energy density is

w= 3B 4 LuH? = e, (15.6-19

So Eq. (15.6-17) can also be written as

=% uvh, (15.6-20)
€pw
where v = 1/,/€fi = w/k is the speed of the wave.
Thus, Poynting’s vector equals the energy density (u) times the velocity of the wave,
This means that the energy associated with wave propagates with the same velocity with
which the field vectors £ and H propagate.

15.7 Plane Electromagnetic Waves
- in a Conducting Medium

Lét us consider a linear, homogeneous and isotropic conducting medium characterised
by constant permittivity e, permeability 1 and conductivity o. To simplify the discussion
we assume that the medium is charge free (p = 0) and external-current free such that
the currents existing in the medium are induced only by the electromagnetic wave itself.
Thus, we take J = oF. Any initial charge distribution within the conductor dies out
quickly. The charges move to the surface and make p = 0 inside.

For such a medium Maxwell’s equations take the following form:

V-E=0 (15.7-1)

V-H=0 (15.7-2)

5 = OH

V x E=_, g -3
S i (15.7-3)

= = ol -4 ; BE ’

V x H= ocE T Ga\t ; (157‘4)

‘ Taking curl of Eq. (15.7-3) and using Eq. (15.7-4) we get

o, i = B D) o)
\Y (V . E) - V2E= B (V X H) = —alu,% & 6”_83_2'&‘_?_.
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Now using Eq. (15.7-1) we get

s S ¥ (15.7-5)

: Similarly, taking curl of Eq. (15.7-4) and using Eqs. (15.7-3) and (15.7-1) we can get

v - o, 08 _ O

sl 15.7-6
ot  Ham =0 ( )

Suppose we are interested in the plane wave solutions and assume that
E (1) = Bl (70 ang  F (7,1) = Hped(Frwt), (15.7-7)

where Eg and Hp are complex amplitudes which are constants in space and time, k = k#
is the propagation vector.

Substituting the solution (15.7-7) in Eq. (15.7-5) or (15.7-6) wet get
[-:—gk.z + jwopu + wgeu] E=0.
For nonzero solution,

2 = wlen + jwop. (15.7-8)
k is thus, complex in character here. Let k = o + 7B. Then

\ k* = a® — 8% + j208. (15.7-9)
| Comparing Eqgs. (15.7-8) and (15.7-9) we get,
o®> -2 =w?eu and 28 = WO L.

On solving these two equations we get

] 2
o = wif T |1+ (2) +1|

. i - = T1/2
3 w\/; | 1+ () -1| . (15.7-10)

In terms of o and S the field vectors become

E(ft) = Eo-e P dloni-up
and H(Ft) = Hy e Ph7.ellohi-ut) (15.7-11)

These solutions show that the field amplitudes are spatially attenuated. The physical -
reason of the attenuation is that the wave sets up electric current in the medium, which



Foundations of ELECTRICITY AND MAGNET[S\
640 | M
o heating. The quantity 5, the imaginar\.

s & \ form of Joul
ry in the form : e b , hoehllr )
ation and 18 called attenuation COnstan

causes dissipation of energ; .
part of wave number &, is a measure of attenu

- g Sivity .
It depends on the frequency w and conductivity . et Chere 15 1o
For nonconductors o = 0 and then we have @ = 0 meaning b ' attenys.

tion of the field vectors.

‘ » haye
For goods conductors o /we > 1 and then we hay

v wo i o
ax~f= \ — (10.7.12)
t which electromagnetic wave entering ,
at the surface. It is known as skip
skin depth d for a goog

The quantity 1/4 measures the depth a
conductor is attenuated to 1/e of its initial amplitude
depth or penetration depth into a conducting medium. Thus,

conductor is _
‘ soLto [ 2 (15.7-13)
G wo i

Obviously, skin depth ¢ decreases with increase in frequency and conductivity. For
good conductors at high frequencies d is very small. That is why in high frequency
circuits current Hows only through the surface of good conductors. This phenomenon is
called skin effect. Due to this effect the ac resistance of a conductor is greater than its de
resistance. For this in high frequency circuits it is better to use a number of fine stranded
wires instead of a thick wire. It increases surface area for a given area of cross-section
and reduces resistance. At microwave frequencies § for Ag is very small (~ 1075 mm).
As a result, in the microwave region the performance of a waveguide made of pure Ag
and another waveguide made of Ag-coated brass would appear to be identical. This
technique is used to reduce the material cost of good conductors.

The attenuation of electromagnetic waves in the conducting sea water creates problem

in radiocommunication with submerged submarine.
AN

Wavelength, propagation speed and the index of refraction

The real part of k, i.e., o determines the wavelength, the propagation speed of the waw
and the index of refraction of the conductor, in the usual way. Thus
; v )

2T
— = w
Ae=—, v=2= and n:c_a
« (9% w
: oA DT
For }a'» good conductor a = Th and hence,

i

__2__, TN __2____* 2w oh
BTl s wop  Vop and n=c 955




Lt wepe b oaxp .c;i L o
by ) e

B cuopter 16 MAXWELL'S EQUATIONS Axp ELECTROMAGNETIC WAVES I g4
Note that the skin depty § A4S given by (15_7_13) for

in terms of the wavelengt, Ae In the conductor ne

a4 good conductor can be expressed

/\c

0 = ¢

27"

Relative directions of E, H and L
Substituting the solutions (15.7-7) in Fqs. (15.7-1) and (15.7-2)

-

k.E

we get
=0 and k.HF—g (15.7-14)
These equations indicates that E

and H
propagation. So electromagnetie wave

are both perpendicular to the direction of
sinac

onducting medium are transverse in nature.

Again, the substitution of the solutions (15.7-7) in Egs. (15.7-3) and (15.7-4)

gives
| jhx B = — L (»jwﬁ) or ExFE= jwh (15.7-15)
and jhx [ =ofF_ jweE or Kx = _ (we + jo) E. (15.7-16)

These two equations mmply that F and g

are mutually perpendicular and also they
are perpendicular to the direction of propagation vector j.

Relative phase of B and H
From Eq. (15.7-15) we have
— — — k 53 = « + Vi ~ —
| H:i(kxE)=—(an>= Jﬁ(an).
: e Jw

Hw

(15.7-17)

This equation shows that E and H are not in phase in a conductor.
Writing a+if = a2+ [2ei®; ¢ = tan‘l(ﬁ/a) and using (15.7-7), Eq. (15.7-1

7)
may be rewritten as
2 2 - T
i Yo tp? (ﬁ X Eo) . ef(k7—wt=g) (15.7-18)
i

\v
vhere 1/4

m = wy/epL [1 + (;‘7_6)2]

Thus, 7 lags behind E in time by the phase angle

1 14 (o)
¢=ta11_1§=§tan 1(—)

we

-
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For good conductors a & 4 and ¢ = 45°. Thercfore, the phase difference betu

€cn the
E and H fields in a perfect conductor is 45°.
Relative magnitudes of E and H is
Al /o2 1 32 a7 444
_]:@:_G__'*‘_d_: i) {1 e (l) J . (]5.749)
1 El Ey w 1 e ‘

For good conductors

H _[o

E| Ve
Thus, in this case,

|Er' > }E’ i

which indicates that in a good conducting medium the field energy is not equally shared
between E- and H-fields but it is almost entirely magnetic in nature.

"Poynting’s vector

The time average Poynting’s vector is

Using Eq. (15.7-17),

(8 = 3+—L . Re {E" X (ﬂ X E*)} e™99

/
2 2 5 = - /L .
et [ (B ) - B (& ﬁ)] =79
Now putting E .7 = 0 and using Eq. (15.7-11)

W .
Re
<§) _ /o2 + :62

2 pw
2w

For good conductors a ~ 8 ~ \/ %ﬁ and ¢ = 45°. Then

1 g 2 _—2Bn-7 4
g S 2y 15.7-21)
(3) 5 2;LwE°e n ,, (15

long the direction of propagation of the wave and is damped of

we get

. B3¢ oo i, (15.7-20)

Thus, energy flow is a
exponentially.



Wi = -

\

Chapter 15 MAXWELL’S EQUATIONS AND ELECTROMAGNETIC WAVES ' | 643

Average electric energy density is

(ue) = %Re% (E l—j*> = LeRe (E : E*) = LeBf - a ST
Average magnetic energy density is

(um) = %Re% (é : I:j*) = ;}/LRC (ﬁ - ﬁ’“) = %;1H§L"““r 4

Thus,

(um)  pHE o212 i
_ I 9 5.7-22
(Ue)  eE2 i ( ) (15.7-22)

Obviously, for good conductors (um) > (u.), i.e., the field energy inside is almost
entirely magnetic in nature.

Total time averaged energy density is
(u) = (ue) + (um) = 3¢ [eEF + pHF]

Using Eq. (15.7-19) we can write

L ! 2
(u) = Le= 207 B2 1144 /14 (i) } . (15.7-23)
€w
In term of «, the real part of wave number as given by (15.7-10), it can be expressed
as 2
)= 0 ERc2T 15.7-24
(u) = S Lo (15.7-24)

15.8 Electromagnetic Waves in Ionised Gases

Let us consider a dilute medium of ionised gases such as the ionosphere. The motion of
positive ions may be ignored as they are massive as compared to the electrons. Also,
the damping of the motion of free electrons due to collisions is negligible here. So the
nonrelativistic (v < ¢) equation of motion of an electron of mass m and charge e under
the action of the incident electromagnetic field will be

dv . : ‘
m— = eE, (15.8-1)

where ¥’ is the instantancous velocity of the electron. Here we have neglected the force

due to magnetic field which is only v/c times the force due to electric fieki
Assuming E = E (7) e739t, we get on integration,

eE(F) _ jeE ()

— Wt

T =

o Ay

R A O N

——

T e e
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Lo the number of free electrons per unit volume then the complex current, den‘iity

. . j’lh()(lzj;j (7
J = noet = —————= ’ (2)

Comparing this equation with J = ols, we find that the complex conductivity of ¢,
medinm s given by

l”()(4)

mw (3)
In case of dilute jonised gascous medinm we can take p = 0, ¢ 2 ¢p and p ~ 4. g,

here NMaxwell's equations take the following form,

Lo L . (“)17 = o . OF
V E=0, V- H=0, VX FE=- and V X H = ol + ¢g—.
Following, the procedure as adopted in Section 16.7, we can arrive at the wave equation,
: Ol OB
V3E ~ ~ eopo—=—- = 0.
Tjor Ol (5)

A similar equation for [ can also be obtained.

Assuming o plane wave solution, [4 (7 1) = F()(J’( ~wt) and substituting it in Eq.
(ll)b\’) woe 1;(1;

9 o
—k?  jwop + wieopo =0 or k? = egpuow [1 + — J ] : (6)
e€ow

Using the relation (15.8-3) and putting 1/\/cofio = ¢ we get

9 2
"2 . w U.),I)
b= 2|0 w2l 7)

I‘)"’ -——_ 1 3 sy yel " 1 v, 1 P
where w), = w/n(,m/(()m is known as electron plasma frequency. .
As w/k is the speed of the electromagnetic wave through the medium, the refractive
index ol the medium is given by

w?2
s ¢ ) ey (8)
"Sem oV e

For w > wy, k is real and waves can propagate frecly. For example, the typical electrod
number density of metals is ng & 102 m™ and the corresponding w, ~ 1053k
ultraviolet light w > 10'%s~1, For this ultraviolet light can generally propagate i1
metals. For w < wy, b is purely imaginary, say jki. In this case,

E('r"’, t) = Ege~k1 (A7) | g=iuwt
and H (Ft): = ﬁoe"k‘(ﬂ"m o ol Q
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nedium and cannot pass through, 4,
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¢s through the jonised gas is, from (15.8-8),

w 5
k 1—&5' (15.8-]())
w ’

ObVif)U.Sly, w/k > ¢ fOT.w > wp. This does not violate the principle of relativity
because it is the group velocity not, the phase velocity wit
place to other and this group velocity is always less th
space. '

h which signals move from one
an ¢, the speed of light in free

15.9 Polarization of Plane Electromagnetic Waves

We have seen that in a plane electromagnetic wave the E-field vibrates in a plane perpen-
dicular to the direction of propagation vector k. In order to completely specify the wave i
we are to specify moment-by-moment direction of E. Such a description corresponds to
the polarization of the wave. The state of polarization of an clectromagnetic wave is
customarily given by the orientation of its E-vector. If the E-field of a plane wave is
aligned along a fixed direction in space although its magnitude and sign may vary in
time. It is said to be linearly polarized.

The plane containing the FE-vector and the direction of propagation (f) is called

the plane of vibration. Suppose a linearly polarized e.lectromz;xgne?ic wave is propagnthfg
along z-direction. The E-vector of the wave may be in any direction in the :r;y-planc.. So !
it can be considered as the superposition of two indepenflent orthf)gonal p]anc.polm'y/,cd i
components having same amplitude and phase. Symbolically, a linearly polarized wave

may be represented by

S S e are AN = S e

B(z,t) = Bu(zt) +Ey(20) f
_ goncj(kz—.-wt) + 3'E0y67(kz—wt)

- ~ i(kz—wi 1’,9-1
_ (iE0x+]E0y) e](kz wt). ( ) )

AR R S e

i
i

£
K
¥ 5
B

. : i akes an angle
The E-vector has the amplitude EZ, +E§y and its direction ma g

= tan~1(Ey, /Eo,) with z-direction. 0 is called polarization angle. e s el
Other t yes of polarizations can be constructed by.the super I;OSI loolarizcd o
Polarized v&?’;res which are not in phase. Let us consider two planc p
b

|
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K . s r—dir . 1 alld thC Otl e
(Y o) 1 1 ave O .IlZCd leI]g T dll eCthl 1 I '
})Oth ¢ )\v'ill 3 RIOII A llre(:tlon, one wayv I) la alon’:

¢ S b 'g
y-direction. Let us represent two such waves D} e
= “ J v —Ww QU-
B. =iE, Gkz—wttes) and By = jEoye ’ (159
= Z /
, : aneles. Corresponding real fields are obtained by 1)
where ¢, and ¢, arc some phase angles. Corresponding Y laking
real parts. Thus,
5 & G = 1Fy, cos(kz — wt + ¢,
E, = 1Egy, cos(kz —wt + ¢,) and Ey i By cos( Pu)

o _ = ¢+ 7/2 we can write for the res
Considering the special case when ¢, = ¢ and ¢, = ¢x7/2 we esultant

wave by superposition as

E=E, + Ey = {Egycos(kz —wt+ @) F ony sin(kz — wt + ¢)

where , 52 .
E,;” 4L =1,
0z Oy

~

m
x
xXY

Fig 15.9-1: Left elliptically polarized wave.

This is equation of an ellipse for components of , with major and minor axes Egs aud
Eoy, respectively. Thus. at any fixed plane z = constant the tip of E-vector describes
an ellipse. The sense of rotation—clockwise or anticlockwise-depends on the phas
difference and can be scen by ta King successive increasing values of wt. Thus, the resultant
of the components

Ey = Ey, cos(kz — wi -+ ®)
represents a vector E, which rotates. clockwise at

observer towards whom the wave is moving. Suc
On the other hand, the resultant of the compone

r all
an angular frequency w, as seen bb‘ ;
: ol
h a wave is right-elliptically polo™
nts

E,; = Eyy cos(kz — wt + ®) and E, = (15_9—5)

~Eoy sin(bz — wt + ?)
is left-elliptically polarized (Fig 15.9-1).
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If we let Eor = Egy = E, i T - 647
E= iB F By with B + Iﬁ) = L. °eP the samne Phase conditions as above then

This shows that the resultang s,

VO S ]
emains constant, although its ( circularly poloriyed,

rection rogag, (he magnitude of F

S, The components
- R
E, = Eycos(kz — wt + ¢) and E, = ' oy
bs ( 1 — ! |'
soresent & wave, which is right-cireul, ' |
rep ght-circularly polarized, On the other hand, the component
) P , ¢ ¢ nents

E., = Fycos(kz — . -
2 o cos( wt+¢) and F, = -f, sin(kz — wt + ¢) (15.9-7)

represent a left-circularly polarized wave.
It is interesting to note that a circularl ;
‘ it o e oo L a circularly polarized wave may be regarded as the
superpo; ) 1 ;) O} 10gonal linearly polarized waves Liaving a phase difference of /2.
5 ‘ nearly & ze C ¢ T rooarce G . ey . .
AlbO,.d inearly po arized wave can be regarded as the superposition of two oppositely
polarized circular waves of equal amplitude. For example, if we add the right-circular
wave of BEq. (15.9-6) to the left-circular wave of Eq. (15.9-7), we get for the resultant

wave
F, = 2FEqgcos(kz —wt+¢) and E, =0

_ and the resultant E-vector is

B =iE,+jEy = 12Eq cos(kz — wt + ¢).

Obviously, it is a linearly polarized wave.

15.10 Wave equation of Potentials with Sources—

Gauge Transformations
how these waves arce produced. We
es. But it is found that accelerated

S . - the calculation

y ' There are & number of p1 occci.ulx es f01. t htul cal Ot(;', lon

charge radiallons: , most fruitful one 1s the p it1a

of y 96"5 C.an PIOBUEE il mtd d charges: Howevel, the,m(; current distributions one finds
adiation from acceleratet ® i mendent charge AN i

Omulation. For a prescribed time CoP L fields are then oltaIEc:

v t g -,

. 1. from whic b , otor tion A, i.e.,

the scalar and vector potentlals fron ; B, A the curl of some vector func ) ;
L yrite &%

always

without inquiring

S0 far we hav : 1ored EM waves -
ar we have considered " current SOUIC

did not consider any external charge

(15.10-1)

Since V . B = 0 we can "y
ﬁ;VXA
1 TR l"“ _: ¢
from Maxwell’s Ba: (15.3-3),
Now
e 4 ¥ ’ , /a /|
Mhere A is called the vecto” P”L’-e’m ]
oA\ _ 0.

Gx | Lt
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e L4 1 / 1 3
, - i 2 , senlar function o, 1.c.,
So f4 4 94 can be written as the pradient ol some 5eask ;

Al
- Y S
;/’| ('3);1‘ --»-ﬁ(/} or f = -V - 7)77 ').1‘.J~2}'
J0

where ¢ is known as scalar polentiol
Now. substituting I = /;;//t, [ = Dfcand ks, (
I, (15.3-4) we get

] 3 J ”_] ) H,“d (J 510’2) ]'IIT,O I\’I?lXWG]]'S

l - - — -t fl) - ) Q/—l
.._.\] A <V X /‘) — ,] —_ (-(’-)/l V(/) *- (’)/,

[t
RUR) P PU) ‘
or VA~ i f(jﬁ = —pJ +V "V - A A e | (15.10-3)

Using I5q. (15.10-2) in the Maxwell’s cquation, V- D =p, we get

OA
Al

w

¥ L » - ‘ 9 J - ‘ o £) o
GtV =g o Vit (v A) = -~ (15.10-4)

We now note that A defined by Eq. (15.10-1) is not unique because D remains
unchanged if we replace A by
—u/ -t - )
A= A+ Vi, (15.10-5a)
where 4 is a scalar function. To keep 5 unchanged as well, ¢ is to be simultaneously

changed to

N
/
(/) = () (1510_5}))
ot

The transformation (15.10-5) is called a gauge transformation and the invariance of
the ficlds under such transformation is called gauge invariance. The freedom implied by
(15.10-H) means that we can always choose a set of potentials A ¢ such that

2n ) » )

V. A+ jue b 0. (15.10‘6)

4 T v 'l)' U ‘\"'l O ) ey \ 1
| ['his choice ig referred to as the Lorentz gauge. Substituting this Lorentz gauge in
s, (15.10-3) and (15.10-4) we get uncoupled wave oamatioe foon oo 1. :

¢ equations for each of A and ¢

9.7 A )
VA - MW = —uJ (15.'10'7)
v‘z‘/} i /I('(T)_‘:f“f) - ...()_ (]510‘8)
dat= €

i
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i aaih e = et i > a4t ¢ VEIL The nint 30 YT )
o = BE B seeidh) ok ssanep . A i€ potennals, .‘_d'ubf'nlnff I/Jrent& Condltl()n
Rre v SAAEL. A S AUl O 2d4liSiY 1he Lorentz o« (1=
reniz condition (15.10-6), A” and ¢ will also

AL T S 2
" O A o TIE SR T
adliJe SaiiTliN

1
[ng
(4]
[
e
=
O
[
D
13
¢
(W]
'4
S
A
o
@
[t
8V
£
Q
e

‘ are I d in th 1 terature. Common purpose
of all these transiormations is 10 simplify Egs. (15.1 0-3) and (15.10-4). Suitability of
3 ganoce gensenas aOr the nr lemn 27 hanAd T2t 1z
2 gauge depends on the prodlem at hand. Let us consider another useful gauge-the
so-called Coulomb gauge. In this gauge one takes

vV-A=0. (15.10-9)

VA~ pe——=—pJ + ,uevd—' (15.10-10)

Vig=-Z. (15.10-11)

15.10-11) can be easily solved to find ¢ as in electrostatics

= p(r'.t)
i) = dv.
(L) 47:5/1r—r |

But here it is difficult to find A by solving (15.10-10). The Coulomb gauge is often
utilized in cases where there are no charge or current distributions, i.e., p=0, J=0.In
this case, one takes ¢ =0 and A satisfies the equation

Eq. i

)-\

iy,
o = A
V%A — pe%,_,— =)

In this case the felds are derivable from a single potential

B':-:X}I aﬂd E’z""ét—‘-
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1

problem 13. The current flowing through a long solenoid of radius a is varied in such
manner that the azial magnetic field inside increases with time according to the low
= _ 7 Bot?, where By is a constant. Find the displacement current density as a function

of the distance T from the azis of the solenoid (r < a).

golution : From Maxwell’s equation
VX E=——=—#2Bt.

Integrating over a cross-section of radius v we get -

/@xE”-dgzm/ngtﬁ-ms or fﬁ’-df:—zBot-m’—’

t)
or, E-27r = —2Bptnr~
or, F = —Bytr.

. The magnitude of displacement current density is

!
! S E()Bg?‘.
!

Problem 14.

/

(i) Show that for a good conductor skin depth & = Ao/2x, where . 15 the wavelength
of electromagnetic waves in the conductor. [C.U. 2003]

(#) Show that for an electromagnetic wave incident on ¢ good conductor the electric
vector reduces to about 1% atl a depin of 0.73 Ac.

(i) Find the wavelength and the propagation speed in copper for radio waves at 1 MHz.
For copper assume p = pg, € = eg and conductivity o = 5.8 X 10 (D)t

Solution :
(7) Suppose the wave is incident normally on the surface of the conductor along
z-axis. Then the electric field inside the conductor is given by Eq. (15.7-11) as

= - — ) a—wt
E(Z,f) = flyeFF f__.3(& .at).

For a good conductor

[wpo

and skip depth
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The wavelength of the wave in the conductor is

27

27 :
/\\C = = 5 = ?’/TO
O

a-

. Skin depth § = Ae/2m.
(1) Let us write

=
!y

Now putting

we get
g = %C_ In —\ = —In100 =0.73 Ac.

(iii) The required wavelength

’\c = = 277\/

9
Vo< i< an X 10~7 < i

X 5.8 x 107
= 415%x 1074

Il

and the pPropagation speed

_ 2w x 108
- 2T

W
V== — =
k.

% X A, X 4.15'% 1074 g1 _ 415ms™1,
Pyl

‘y{oblem 15. The electric field associa

ted with electromagnetic: wave is

E = 2Fycos(kz — wt) + YEysin(kz — wt),
where By is g constant. Find the corresponding magnet;c
vector §. 1 |

field and the Poyntz"ng’s
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Poynting’s vector

o - kE2 kE?
—":: & XI{:ZA,‘%'—-O 2 wl — 31 2 VA . = "—0'
5 e [cos?(kz wt) + sin*(kz — wt)] = 2 Tk

problem 16. An electromagnetic wave is propagating through o nonconducting medi

characterised by permittivity 5¢; and permeability 211g. The magnetic field associated u
the wave 18

—

H =42 cos(3z — wt) A/m,

where z 45 i metre. Find the value of w. Also find the electric field ussociated with
wave. What is the direction of propagation of the wave?

Solution : Speed of the wave is given by

1
JL€
0 w = k = 4 — _'3_"'(,'
VZNO . 560 \/1—0-

A/ 1L
3
= —= % 3 x 10%rad/s = 2.846 x 108 rad/s.
V10 / /

P ==

= €

~

From the equation
-~ - 9D
VxH=—
ot’
we get,

2

Jl: x H = —jweE.
q

k-2
=7
€w €w

; 3 -2 - cos(3z — wt)
75 X% 8.854 x 10-12 x 2.846 x 108

el
Il

cos(3z — wt)

= #476.2 cos(3z — 2.846 x 10%t) V/m

The constant phase planes are

¢ = 3z — wt = constant.

The direction of propagation is perpendicular to these planes, hence,

€., the wave propagates along +2z-direction.
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)
j/roblém 19}'2 C’on;;dcr the propagation of EM waves through dilute ionised gases such
as the 10'.71-0.-5]) CTC. @-”'CG,-. S’zpw that the critical frequency below which wave propagation
through it is 10t P ossible is given by f. ~ 9\/ng, where ng is the number of electrons per

3
metre” .

solution : The effective refractive index of the medium is given by (15.8-8),

2
- @)
, W

D)

Z

is the electron plasma frequency.

where wp =
€EQMm

For free wave propagation n should be real, i.e., w 2 Wp-

- The critical frequency

2 —-19
fc:gz-z—l- CLQE—:—l— 16X1O - \/;)Ez.()\/non.
on 2w\ egm  2m /8.854 X 10-12 x 9.1 x 10731

nfinite, straight wire in which a

Problem 20. Calculate the retarded potentials of an 1
find the resulting electric and

constant current Io 18 turned on abruptly at t = 0. Also,

magnelic fields.

e straight wire in which a constant current Io is started
_ 0 fort < 0and I(t) = Io for t = 0. Since the wire
s electrically neutral charge density p = 0 everywhere in the wire and hence, scalar
potential produced by the wire at the point of observation P is zero. Assuming the wire
to be along z-axis (Fig 15.p-20), we can write for the vector potential at P as

Solution : Consider an infinit
at ¢+ = 0. Thus, current I(t)

[+ I(t - Rjc)dz

) 7 I‘O
A(F L) = L
47

~ R
: Tz
dz
R
z
o L ;
r
1T }




