Example 8.1 A parallel plate capacitor with circular plates of radius 1 m has a capacitance of 1 nF. At t = 0, it is connected for charging in series with a resistor R = 1 M Ω across a 2V battery (Fig. 8.3). Calculate the magnetic field at a point P, halfway between the centre and the periphery of the plates, after $t = 10^{-3}$ s. (The charge on the capacitor at time t is $q(t) = CV[1 - \exp(-t/\tau)]$, where the time constant τ is equal to CR.)

FIGURE 8.3

Solution The time constant of the *CR* circuit is $\tau = CR = 10^{-3}$ s. Then, we have

$$q(t) = CV [1 - \exp(-t/\tau)]$$

= 2 × 10⁻⁹ [1- exp (-t/10⁻³)]

The electric field in between the plates at time t is

$$E = \frac{q(t)}{\varepsilon_0 A} = \frac{q}{\pi \varepsilon_0}$$
; $A = \pi (1)^2$ m² = area of the plates.

Consider now a circular loop of radius (1/2) m parallel to the plates passing through P. The magnetic field ${\bf B}$ at all points on the loop is

along the loop and of the same value. The flux $\Phi_{\rm E}$ through this loop is $\Phi_{\rm E} = E \times {\rm area}$ of the loop

$$= E \times \pi \times \left(\frac{1}{2}\right)^2 = \frac{\pi E}{4} = \frac{q}{4\varepsilon_0}$$

The displacement current

$$t_d = \varepsilon_0 \frac{\mathrm{d} \Phi_E}{\mathrm{d} t} = \frac{1}{4} \frac{\mathrm{d} q}{\mathrm{d} t} = 0.5 \times 10^{-6} \exp(-1)$$

at $t = 10^{-3}$ s. Now, applying Ampere-Maxwell law to the loop, we get

$$B \times 2\pi \times \left(\frac{1}{2}\right) = \mu_0 \left(i_c + i_d\right) = \mu_0 \left(0 + i_d\right) = 0.5 \times 10^{-6} \ \mu_0 \exp(-1)$$

or, $B = 0.74 \times 10^{-13} \,\text{T}$

8.3 Electromagnetic Waves