686 | "
Foundations of ELECTRICITY AND .\lAGNETISM

Now
ot ot

So taking Hy = Hpe™ ! we can write

"% = 6 X El
=} H=—-.
Jwipt
This indicates that inside a perfect conductor, where El =l f—j1 is also zero. So
both the tangential and normal components of E} and H; are zero, i.e.,
Eln = Elt =0 and Hln = fflt =0,
So in this case, the boundary conditions become
eogBoy, =0, DBayp = B, =0
W9 L. >3 %
N —n X By = ](, FEo = Ei:=0. (162—7)
'm j25]
IQ |
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R 16.3 Reflection and Refraction of Electromagnetic Waves
2 at the Interface of Two Dielectric Media
;
Reflection and refraction of electromagnetic waves (light) at a plane interface of two
} different media are familiar phenomena. Various aspects of these phenomena including

ordinary laws of reflection and refraction, amplitude relations, phase changes, polariza-
tion etc. can be well-described by electromagnetic theory.

A. Ordinary laws of reflection and refraction

Suppose that the zy-plane forms the interface (z = 0) between two linear homogeneous

nonconducting) media characterised by permittivities €; and e, and perme

dielectric (
ve

abilities p7 and pe, respectively as shown in Fig 16.3-1. Let a plane electromagnetic wa
be incident on the interface at the point O. The wave is partly reflected and partly
refracted. Let us represent the electric fields associated with these waves by

5o o g(Rr—wt
E - b()cj( iy )')
:T — B..d r'::l-f"—wlt
Ey = Eype ( ),
and Eo = Egoej(kz":—“’zt), (16.3-1)
where Eo, F1o and Eyo are the amplitudes, &, k1 and ks are the propagation vectors wh
. . g elVe
incident, reflected and refracted waves,reSpectlvbb

w; and wy are the frequencies of the

\
1
4
4
‘




' i .‘ qr / 1‘ T ‘Jr ; .J' 3 T - .
Chaptet 16: ELECTROMAGNETIC BOUNDARY VALUE PROBLEMS | 687
AX

-
Ky
.
ky
o~ 1% .
VAR z
K
€l | €2 H2

Fig 16.3-1:Reflection and refraction of EM waves.

Let us now apply the boundary condition that the tangential components of electric

field are continuous across the interface z = 0. Thus,
(E())[ . cj(kcrr—wt) + (Elﬂ)f . e,;(kl-r—w]:‘,) - (EQU)f .‘ej(kz-/'—wpt), (163-2)

bhseript ¢ is used to denote tangential components. The condition (16.3-2)
all values of time and it immediately follows that

w=w = ws. (16.3-3)

where the su
must be valid for

Thus, we find that the frequency of clectromagnetic wave does not change on reflection

ond refraction.
The condition (16.3-2) must also hold at all points on the interface (z = 0). So we
must have SV TP
b-7r=k -T=ko-7 atz=0
Therefore,

by = ke = ]'"'2:1: and ’In'y = l‘"'l','}' = ]{IQy. ) (163-4)

assumed to be in the zz-plane then &y = 0. Consequently

" If the incident beam 18 ASSEEEE 7
1 ko lie in the xz-plane.

and both Ay anc
ormal to the interface we may conclude that the incident, reflected,

normal to the interfoce at the point of incidence all lie in the same

kl;/ e 1-72” =0
Since z-axis 18
refracted waves and

plane,
From Fig 1631
oy = Esinf, Fiz=kisinfy and Fkoy = kysin 0. : (16.3-5)
Thercfore, 1o the condition kg = k1, we get
yerefore,

ksinf =k sin 6. (16-3‘6)
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Since the vectors k and El lie in the same medium we can write for the phase velocity

in medium 1 as
“1 1 (16.3-7)

R Jha

d
k

As w = wy, therefore, k = k1 and from Eq. (16.3-6) we get

6 =0. (16.3-8)
That is, the angle of incidence is equal to the angle of reflection.
Again from Eqs. (16.3-4) and (16.3-5),
ki = kox
or kiysinf; = kosinfy
sinf; ke w/k1 v c/va _ m2
—2_ M o === 16.3-9
or sinfy k1 w/ke w2 c/v ni ( )

- where v1 = w/k; and vy = w/ka represent the phase velocities of the waves in media 1

and 2, respectively; n1 and no are the refractive indices of the media 1 and 2, respectively.

Obviously,

nq sin 1 = nasin f2, (16.3-10)

which is the well-known Snell’s law of refraction.

B. Fresnel’s equations

The ordinary laws of reflection and refraction as discussed above tells nothing about the
fractions of incident wave-amplitude reflected or refracted. The equations which relate
the amplitudes of the reflected and refracted waves with that of the incident wave ar¢

known as Fresnel’s equations.
We know that F-vector in a plane electromagnetic wave is perpendicular t0 the

direction of propagation of the wave. However, it may lie in arbitrary directions in the
plane normal to the direction of propagation. It is convenient to consider two extreme
cases separately, one in which the E-vector of the incident wave is parallel to the plane
of incidence (the plane defined by k and 7); this is called p polarization (p for parallel)-
The other in which the E-vector is perpendicular to the plane of incidence is called §
polarization (s for a German word senkrecht meaning perpendicular). The general case
of arbitrary polarization can then be obtained by a suitable linear combination of the

two extreme results.
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Case IV. E is perpendicular to the plane of inctdence (s-polarized wave).
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Fig 16.3-2: Reflection and refraction with E-vector
normal to the plane of incidence.

Suppose that the E-vector of the incident wave lies perpendicular to the plane of
incidence (xz-plane) as shown in Fig 16.3-2. As the media on two sides of the interface z =
0 are isotropic the E-vectors of reflected and refracted waves will also be perpendicular
to the plane of incidence. In Fig 16.3-2 we assume that all the E-vectors are directed
normally out of the plane of the paper. Magnetic vectors H . H, and ﬁg are in the plane
of incidence and their directions are chosen so as to give a positive flow of energy in the

direction of the respective propagation vectors. Let us represent the incident, reflected
and refracted waves by

B = Bei(Frwt) g kXE

: (16.3-11)
Wil ’
= = ~ -: . = _: 7 E
By = Brped(rm-et) g _ B x By (16.3-12)
Wity
By = Bpgel(Femwt) g _ Rz X Bo (16.3-13)

Wity

Since the electric vectors are all parallel to the interface » — 0, the continuity of the
tangential components of E-field gives

h g

;=

Eoej(k—"-'r_“—u}t) 4+ Eloej(El-F—wt) — Egoejk '2'-.—wt«).

This condition must be valid for all values of ¢ and for all points on the interface.

This leads to the cancellations of the exponential factors and gives rise to ordinary laws
of reflection and refraction. Thus,

Eq+ E19g = Eo (16.3-14)
{Elec. & Mag. — 45]
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The continuity of the tangential components of H-vectors across the interface , _ 0

requires that

—Hy cos 0 - g cos 0y = — o cos 0. (].6,:;-]5)
Now
I = ﬁfl’_ — a., ,’l_ylb_ [uh‘ill}’,' . (].6.3~7)]
Wt /1 k:
¢
Iy = [~ Fy
) M1
Similarly,

(- ; (@) o
I'/.]() = —-~-B1() and Hg() = = /420.
14 p2

Therefore, 19¢. (16.3-15) may be rewritten as
b &

. 2 g €9 , .
("* [."}() cos ) + E]() cOSs 0) -(-1— == ""EQ() COSs 02 \/:z—, (1()3—16)
V 4 2

where we use 07 = 0.
Solving gs. (16.3-14) and (16.3-16) we get

\/_(”1_ cosf) - 2 cos Oy
"’”’ " Ve (16.3-17)
1/(—1(050 +- ‘/—(os()z
22 12

and
2, /—(i cos )
by = f[ j;’ = = & , (16.3-18)
— - cosf - %1/ 2 ¢os 0y
22 42

where ) is called amplitude reflection coefficient and Ly, the amplitude transmission
cocfficient. The subscript L is used to denote that we are dealing with the case in w ‘hich
I s perpendicular to the plane of incidence. Equations (16.3- 17) and (16. 3-18) are
known as Fresnel’s equations.

Note that these equations give the amplitudes of the reflected and transmitted waves
relative to the amplitude of the incident wave. Most dielectrics are essentially nonmag”

netic and we can use gy = g = po and n1 = /€1 /€y as the refractive index of mediu®

| and ng = y/ea/co as the refractive index of medium 2. In this case, Fresnel’s EG®
(16.3-17) and (16.3-18) take the following common from:

. Eio _ n1cosl — nycos by (16 3-19)
= FEo 71 €08 f + ny cos f,
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L = !2:’_[' — 2N cos ()

o 1y cos 0 4 ny cosly

(16.3-20)

Using Snell's Taw
Sin 0 ny

sinfly ny’
e Iresnel’s equations can be rewritten as

] E[() _ sin (() = ()3)

Pl = = - 16.3-21
YTy T T sin(0+ 00) (RoEL)

and 5 0 o Baind
" o0 2cos0sin 0y (16.3-22)

By sin(0+ 0y)

Case V. IV is parallel to the plane of incidence (p-polarized wave).
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Fig 16.3-3: Reflection and refraction with E-vector
parallel to the plane of incidence.

Now we consider the case when E-vector of the incident light is parallel to the plane
f)f ncidence (zz-plane) as shown in Fig 16.3-3. Since the media on the two sides of the
interface z = 0 are isotropic the E-vectors of reflected and refracted waves will also be in
the plane of incidence. Corresponding magnetic vectors ﬁ, H, and H, are perpendicular
to the plane of incidence. Their directions are chosen so as to give a positive flow of
eﬂergy in thg direction of respective propagation vectors. Thus, in Fig 16.3-3 the vectors
_H » Hi and Hy are all directed normally out of the plane of the paper and parallel to the
Interface z = 0.

The incident, reflected and refracted waves may be represented bv the Eqs
(16.3-11)—(16.3-13) as before. Now the continuity of the tangential components of f-
Delds gives ~
Eocos@) — Ejgcos = Eqycos by, (16..’&23)
Where we use 0; = 0.
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The continuity of the tangential components of H-fields gives

Ho + Hio = Hzo- : (16.3.9,,

As before,

. €
V't V 41 V K2

Therefore, Eq. (16.3-24) becomes

€1 €2
(Ey+ Ep) | — =L = 16.3-95
(Eo + 10)\/#1 20\//12 (6320)

Solving Eqs. (16.3-23) and (16.3-25) we get

E‘ ‘/9—0059— —Eicoseg
v
=2 = 2 o (16.3-25)
0 22 cos + , | — cos by
2 11

and
2 \/—E—T— cos
b = EEQOO = —— - . . (16327
.\/:COSQ + \/:cos D)
2 231

These two equations are known as Fresnel’s equation for the case of. polarization in

the plane of incidence.
Most dielectrics are essentially nonmagnetic and we can use p; = p2 = o,

@ €1 €9 ‘

ny=./— and ng=,/—.
€0 “€Q

In this case, Fresnel’s Eqgs. (16.3-26) and (16.3-27) take the following common form:

;o Eqg _ M2 Cos 6 — nq cos B9 (16.3'28)
“ FEy ng cosf + ny cos 65

and
e Eoy 2n1cosf@ (16.3‘29)

" Ep  mnacosf+ nycosfy

Using Snell’s law
sin @ A iy

sin 92 " 'n,'l’ ‘k
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“hap™

(

[91-051101’5 cquation can be rewritten as

- Ew _ sin20 —sin20, _ 2 cos(0 + 0y) - sin(f — 0y)
1= By 7 sin20 +sin20, 25in(0 + 03) - cos(0 — 02)
_ ‘tan(6—06;) (16.3-30)
tan(0 + 05) " '
and, B = _@ _ 4sin 0y - cosl _ 2sinfy - cosl N (16.3-31)
Eo sin 20 + sin 20y sin(0 + 62) cos(0 — 02)

i6.4 Physical Implications of Fresnel’s Equations

. . oy b , .~ ‘o
Various important aspects of electromagnetic waves can be described by using Fresnel’s

‘equations. In particular, we are interested in polarizing effects, phase changes, total

internal reflection, reflectance and transmittance.

1. Polarization by reflection

From Eq. (16.3-30) we find that 7 = 0 for 0+ 02 = 7 /2. This means that if 0 + 6> = /2

then electric field polarized parallel to the plane of incidence is not reflected at all.
Equation (16.3-21) shows that under this condition ry # 0, i.e., the clectric field polarized
normal to the plane of incidence is partly reflected. Thus, an unpolarized light consisting
of both types of E-fields incident at an angle § = 0, satisfying the condition 0),+6s = w/2,
will be plane polarized normal to the plane of incidence. This angle of incidence ), for
which 7y = 0 is known as Brewster’s angle or angle of polarization. Snell’s law in this
case, gives

ng sin 6 sin 0,, tamn 0 (16.4-1
—_— = - = — = tanduv,. R
ny sinfo  sin (% - 0,,) P )

Plane g Partially

polarized ny | ny polarized

90°
AV z
Unpolarized

Fig 16.4-1: Brewster’s angle.
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Thus, the tangent of the angle of polarization is equal to the refractive indeg of 1),
reflecting medium relative to the incident medium. This is known as Brewster’s lay, Tl;:
law is illustrated in Fig 16.4-1. At the angle of polarization the reflected and refractgd
rays are 90° apart.

2. Amplitude coefficients and phase change

Fresnel’s equations show that the amplitude coefficients depend on the value of the angle
of incidence 6. Let us examine this dependence over the entire range of values of §. Ry,
nearly normal incidence 6 and 6, tend to zero. Then Egs. (16.3-19), (16.3-20), (16.3-2g)

and (16.3-29) give

ny —n2
i domo = = [Milo=0 = 7 g (16.49)
and
27’L1
[tll]ozo = [tLlp—o = m - (16.4-3)

As an example, for air-glass interface ny; = 1 and ng = 1.5, then

[Pilpeo = — [7'Il]o=u =—0.2

and
[t1) geg = [tLlp=o = 0.8.

For normal incidence the plane of incidence becomes undefined and any distinction
between the parallel and perpendicular components vanishes. So the physical result must
be independent of polarization. The difference in signs of ) and r | arises only because
E and El are antiparallel in Fig 16.3-3 when 6 goes to zero, where as E and El in Fig 16.3-:2
point in the same direction. For grazing incidence 6 tends to 90° then

T = r; =—1 and t“ =it] =0, (16-4'4)

For ng > nj, from Snell’s law 65 < 6 and hence from (16.3-21), r, is negative for all
values of ¢. The significance of this negative sign is that the component of electric field
perpendicular to the plane of incidence suffers a phase change Ad, = m when reﬂected
from a surface backed by an optically denser medium. In contrast Eq. (16.3-30) shows
that for ng > ny, i.e., 6 > 6y, 7| starts out positive at = 0 and decrease gradually until
it becomes zero at the polarizing angle € = 6,. As 6 increases beyond Op, T becomes
progressively more negative and reaches the value —1 at 6 = 90° (Fig 16.4-2). Thus. for
ng > ny and the electric field polarized parallel to the plane of incidence ) 18 positive
(i.e., no phase change, Ag = 0) for § < 8, and | is negative (i.e., a phase change of T
for 6 > 6, (Fig 16.4-2).
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6.4 1 Reflectance and Transmittance
4.1

The asual measurflblo (1‘11%.1111;ities are not the amplitudes of the reflected and transmitted
= ficlds,.but the intensitics of the reflected and transmitted waves. The intensity of o
qave defined as the zw.erag? enel:gy per unit time crossing a unit arca imagined in the
plane pormal to the direction of flow. This is related to the time average Poynting’s
\.Cct()l', ‘

I=(s)=3e1E3 v, (16.4-11)
ghere U1 = 1/ /g is the velocity of the wave. Let the incident beam falls on an
aea A of the interface. Then the cross-sectional area of the incident, reflected and
sansmitted beams are respectively, A cos0, A cos 01 and A cosfs. So the energy per unit
time flowing in the incident beam is I 4 cos6 and it is the power incident on the area A
of the interface. Similarly, the power being reflected from area A is I} Acos@, and the
power being transmitted through A is I A cos 6. We now define the reflectance (or the
reflection coefficient) R of the surface as the fraction of incident power that is reflected
and the transmittance (or the transmission coefficient) T" as the fraction of incident power
that is transmitted. Thus,

IlAC0891 Il E10 2
B = =12 y.4-192
ITAcos@ 1 (EO (16.4-12)

[ Incident and reflected waves are in the same medinm)]
and

IQACOSHQ IQCOSHQ E20 e €2V COSQQ e .
= = = , - (16.4-13)

= TAcosO  Tcos@ Ey cqvy cosO

For nonmagnetic dielectric medium,

- E'()Q 2 no COS 02 . )
= (_E—o“) nijcosf (16.4-14)

The principle of conservation of energy inquil'es that the rate of energy flowing into
area A must be equal to the rate of energy being reflected from it plus the rate of energy
being transmitted through A, provided there is no loss at the interface. This requires
that

B P =1 (16.4-15)

: For the case of waves with F-vector parallel to the plane of incidence, we can write
' Rand T using Egs. (16.3-28) and (16.3-29) as

ny cos  — ny cos Oy .
= [ === - 16.4-
K (ng cos 0 + ny cos 02) ( 16)

ang

¢ ' 2 9 COS (/¢
( 2n4 cos b ) i cos Oy (16.41-17)

T, = =
I ng cos 0 -+ nq cos 2 n, cos
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v‘x‘ . & & - N ~ .~ -~ - - od *
Llhey are plotted as a function of the angle of incidence in Fig 16.4-6. For Waves

lari=an 1nArmr N ¥ ” g S . s N ¢ \
olarized normal to the plane of incidence one can write, using Eqs. (16.3-19) and (163
o i

1o ')

, D) 9
Ew\~ [ nycos@ —nacosfa\”
R, = ( — = | — : = (16.4-13)
\ ~ne A A p ~8_ Q
\ £0 / Ny Ccost + nacosvy,
and
2 2
- |; Egg\) no cos s 2n;cosé na cos 2 (1641
L = . — *‘ . . 9
 Eq njcosf n; cos 8 + nocos s nycosf )
A
1.0
= Tw
- 1
2 el
< 05+~
=
T Ris
0.0 — -
Ou
— 0 in degrees
Fig 16.4-6: Reflectance and tramittance as a function of the angle of incidence
for E-field polarized parallel to the plane of incidence.
A plot of R, and T as a function of the angle of incidence is shown in Fig 164-7.

A

0° 90°
— Bin degrees

Fig 16.4-7: Reflectance and transmittance as a function of angle of incidence
for E-field polarized normal to the plane of incidence.
Note that the value of reflectance is high near grazing incidence. This explains why
a glass, polished metal and smooth wet surfaces appear shining when looked at thert
tangentially.
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for normal incidence which is a situntio), of great. practicn) importase:
() . ()1)‘ oo ( ’

7
A\

Th 1h &
and [} = R = H’H 2 | e /)

1y b1y

‘
4

and T=T7 =7 = ...“/1""{'.,'(9:,_’,,
(1) + 1y )?

Obviously, LT =1, which is in accordance with the principle of copser vation of
encrgy. For an air-glass surface nyfny = 1.5 and It = /25, This measns that 47, of light
incident normally onan aiv-glass interface i roflected bhack, For 1y > 1y and angle of
incidence greater than 0. we note from I, ( 16.4-9) that reflectance

—
~

Ny =|ry ]2 =y e =

™

Similarly, we can show that in this case, Ity == 1., This means that all the onergy s
reflected when the angle of incidence exceeds the eritica) arigle,

16.5 Reflection and Transmission at a Conducting Surface

Suppose zy-plane forms an interface (z = 0) between o diclectric meding (1) charnc-
terised by the permittivity ¢; and permeability 11y and 2 conducting mediuin (2 with
permittivity ey, permeability g and conductivity o. Let o plane clectromagnetic wave
of frequency w polarized along the z-direction and travelling along z-direction e inei-
dent normally on the interface. In Fig 16.5-1 I.":', I deseribe the incident, vy, Iy, H;
describe the reflected wave travelling along negative z-direction and 12, 7y describe the
transmitted wave,

-7

- - £, 10 7
El (411;11 X L) E2

E

e b
Jeeldld
H ®

Y=<
i

Vg‘rg

e 7

Fig 16.5-1: Reflection and transmission at normal incidence from a conducting surface.

Let us describe the wave ficlds by

Incident wave: [ = illge)Fz-wt)  fi — le(,eﬂ"“"‘”"}

e ave:  Jor = 1 ne ik zatwt o = — i Hne=I k2t
Reflected wave:  F) = i ge I Rzdwt) - fj o G eI kzdu) (,]f},:.‘}—l}
Transmitted wave:  Fy = i[ygedP2z-wt)  ff, — ,7'11;;‘;!:"{"”"”""""),




