GE3 COMPUTER SCIENCE

CAND C ++ LECTURE SERIES ror
B.SC 3RD SEMESTER &y

SUBHADIP MUKHERJEE

DEPARTMENT OF COMPUTER SCIENCE

KHARAGPUR COLLEGE

LECTURE |1

POINTERS

A pointer is a variable that represents the location (rather than the value) of a data item, such as a variable

or an array element.

Pointers are also closely associated with arrays and therefore provide an alternate way to access individual
array elements.

* let us assign the address of v to another variable, pv.

* pv is referred to as a pointer variable.

address of v »| valueofv

pv &v

pv v

Therefore, *pv and v both represent the same data item

Subhadip Mukherjee, Department of C o mputer Science, Kharagpur College

¥

)

=
iy
i

.

POINTERS

Example |
#include <stdio.h> u=3 &u=FBE pu=FBE *pu=3
= = = * =
main() v=3 &v=F8C pv=F8C pv=3
{
int u = 3;
int v: Address EC7 Address FBE
3
int *pu; /* pointer to an integer */ F8E - — 3
int *pv; /* pointer to an integer */
pu u
pu = &u; /* assign address of u to pu */
vV = *pu; /* assign value of u to v */ Address EC5 Address F8C
pv = &v; /* assign address of v to pv */ F8C > 3
printf(*\nu=%d &u=%X pu=%X *pu=%d*, u, &u, pu, *pu); pv v

printf("\n\nv=%d &v=%X pv=%X *pv=%d", v, &v, pv, *pv);

Subhadip Mukherjee, Department of Computer Science, Kharagpur College

POINTERS

Example 2

#include <stdio.h>

main{)
{
int ul, u2;
int v = 3; 1=16 u2=16
. . uil= Ue=
int *pv; /* pv polnts to v */
Ul =2 * (v + 5); /* ordinary expression */
pv = &v;
u2 = 2 * {(*pv + 5),; /* equivalent expression */

printf{*\nu1=%d u2=%d"', ul, u2);

Subhadip Mukherjee, Department of Computer Science, Kharagpur College

POINTERS

Passing pointer to an argument

 Pointers are often passed to a function as arguments. This allows data items within the calling portion of the program to
be accessed by the function, altered within the function, and then returned to the calling portion of the program in
altered form. We refer to this use of pointers as passing arguments by reference (or by address or by location),in

contrast to passing arguments by value.

o mputer Science, Kharagpur College

Subhadip Mukherjee, Department of C

¥

)

=
iy
i

.

POINTERS

Passing pointer to an argument (Continued)

#include <stdio.h> void functi(int u, int v)

void functi(int u, int v}; /* function prototype */ {
void funct2(int *pu, int *pv); /* function prototype */ u = 0j
v = 0;
. printf("\nWithin functi: ushd v=%d", u, v),;

main() return,
{ }

int u = 1;

int v = 3;

. vold funct2(int *pu, int *pv)
printf(*\nBefcre calling functi: wu=%d v=%d", u, v);

functi(u, v); {
printf(*\nAfter calling functi: wu=%d v=%d", u, v); *pu = 0;
. *pv = 05
f(* fore calling funct2: u=%d v=%d", U, Vv);) o
printf(*\ninBefore g t2 » V) printf(*\nWithin funct2: *pu=%d *pv=%d*, *pu, *pv);
funct2(&u, &v); return:
3

printf("\nAfter calling funct2: u=%d v=%d', u, Vv);

Subhadip Mukherjee, Department of Computer Science, Kharagpur College

POINTERS

Passing pointer to an argument

Before calling functi: u=1 v=3
within functt: u=0 v=0
After calling functi: u=1 v=3
Before calling funct2: u=1 v=3
Within funct2: *pu=0 *pv=0
After calling funct2: u=0 v=0

Subhadip Mukherjee, Department of Computer Science, Kharagpur College
. 1

POINTERS

POINTERS AND ONE-DIMENSIONAL ARRAYS

« Recall that an array name is really a pointer to the first element in the array. Therefore, if x is a one dimensional array,
then the address of the first array element can be expressed as either &x [01] or simply as X.

#include <stdio.h>

nain i= 0 x[i]= 10 *(x+i)= 10 &x[i]= 72 x+i= 72
(0 i= 1 x[i]= 11 *(x+i)= 11 &x[i]= 74 X+i= 74
static int x[10] = {10, 11, 12, 13, 14, 15, 16, 17, 18, 19}; i= 2 x[(i]= 12 *(x+1)= 12 ax[i]= 76 x+i= 76
int i; i= 3 x[i]= 13 *(x+i)= 13 &x[i]= 78 x+i= 78
for (i = 0; 1 <= 9; ++i) ({ J...= 4 x[i]= 14 *(x+J.L}= 14 &x[:ll]= 7A EH.L: 7A

/* display an array element */ 1= 35 x[i]= 15 *(x+i)= 15 &x{i]= 7C x+i= 7C
printf("\ni= %d x[i]= %d *(x+i)= %d*, i, x[i], *(x+i)); i= 6 X[1]= 16 *(x+1)= 16 &x[1]= 7E Xx+i= 7E

/* display the corresponding array address */ J_'= 7 x[?]= 17 *(x+;})= 7 EKI%F 80 I+"_l= 80
printf(" &x[i]= %X x+i= WX, &x[1], (x+i)); 1= 8 x(1]= 18 *(x+i)= 18 &x[1]= 82 X+1= B2

} i= 9 x[i]= 19 *(x+i)= 19 &x[i]= 84 X+i= 84

Subhadip Mukherjee, Department of Computer Science, Kharagpur College

34

POINTERS

DYNAMIC MEMORY ALLOCATION

» The use of a pointer variable to represent an array requires some type of initial memory assignment before the array
elements are processed. This is known as dynamic memory allocation

« Suppose x is a one-dimensional, 10-element array of integers. It is possible to define x as a pointer variable rather
than an array. Thus, we can write int *x; rather thanintx [O] ;

* Or Ldefine SIZE 10
int x[SIZE];

 To assign sufficient memory for x, we can make use of the library functionmalloc, as follows.
x = (int *) malloc(10 * sizeof(int));

Subhadip Mukherijee, Departmént of '- mputer Science, Kharagpur College

it

POINTERS

ARRAYS OF POINTERS

data-type “*array|expression 1};

data-type array|expression 1)|expression 2],

data-type “*arraylexpression 1)|expression 2] . . . |expression n-1},

data-type array|expression 1)|expression 2] . . . [expression nj;

Subhadip Mukherjee, Department of Computer Science, Kharagpur College
. 1

POINTERS

ARRAYS OF POI NTERS x[0] Ist one-dimensional array
int *x [10] ; x[1}] 2nd one-dimensional array
ba
x[2] 3rd one-dimensional array [
(x[2] + 5)
*(x[2] + 5)
x[9] 10th one-dimensional array

Subhadip Mukherjee, Department of Computer Science, Kharagpur College

COMPILEAND RUN A C CODE

Thank You

End of Lecture ||

Subhadip Mukherjee

Department of Computer Science

Kharagpur College

Kharagpur, India

