
GE3 Computer Science
C and C ++ Lecture series for

B.SC 3rd semester by

Subhadip Mukherjee
Department of computer science

Kharagpur College

LECTURE 13

Introduction to C++ Programming

• What is programming?

Programming is taking

A problem

Find the area of a rectangle

A set of data

length

width

A set of functions

area = length * width

Then,

Applying functions to data to solve the problem

2

Introduction to C++ Programming

Programming Concept Evolution

• Procedural

• Object-Oriented

3

Procedural Concept

• The main program coordinates calls to procedures and hands over
appropriate data as parameters.

4

Procedural Concept (II)

• Procedural Languages
• C, Pascal, Basic, Fortran

• Facilities to
• Pass arguments to functions

• Return values from functions

• For the rectangle problem, we develop a function

int compute_area (int l, int w){

return (l * w);

}

5

Object-Oriented Concept

• Objects of the program interact by sending messages to
each other

6

Characteristics of OOPL

• Encapsulation: Combining data structure with actions
• Data structure: represents the properties, the state, or characteristics of objects

• Actions: permissible behaviors that are controlled through the member functions

Data abstraction: Process of making certain data inaccessible

• Inheritance: Ability to derive new objects from old ones
• permits objects of a more specific class to inherit the properties (data) and

behaviors (functions) of a more general/base class

• ability to define a hierarchical relationship between objects

• Polymorphism: Ability for different objects to interpret
functions differently

7

Basic C++ Extension from C

• comments
/* You can still use the old comment style, */

/* but you must be // very careful about mixing them */

// It's best to use this style for 1 line or partial lines

/* And use this style when your comment

consists of multiple lines */

• cin and cout (and #include <iostream.h>)
cout << "hey";

char name[10];

cin >> name;

cout << "Hey " << name << ", nice name." << endl;

cout << endl; // print a blank line

• declaring variables almost anywhere
// declare a variable when you need it

for (int k = 1; k < 5; k++){

cout << k;

}

8

Properties C++

• Is a better C

• Expressive

• Supports Data Abstraction

• Supports OOP

• Supports Generic Programming
• Containers

• Stack of char, int, double etc

• Generic Algorithms
• sort(), copy(), search() any container Stack/Vector/List

9

10

C++ Data Types

structured

array struct union class

address

pointer reference

simple

integral enum

char short int long bool

floating

float double long double

Recall that . . .

char str [8];

• str is the base address of the array.

• We say str is a pointer because its value is an address.

• It is a pointer constant because the value of str itself
cannot be changed by assignment. It “points” to the
memory location of a char.

11

str [0] [1] [2] [3] [4] [5] [6] [7]

‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’

6000

Addresses in Memory

• When a variable is declared, enough memory to hold a value
of that type is allocated for it at an unused memory location.
This is the address of the variable

int x;

float number;

char ch;

2000 2002 2006

12

x number ch

Obtaining Memory Addresses

• The address of a non-array variable can be obtained by using
the address-of operator &

int x;

float number;

char ch;

cout << “Address of x is “ << &x << endl;

cout << “Address of number is “ << &number << endl;

cout << “Address of ch is “ << &ch << endl;

13

x number ch

2000 2002 2006

What is a pointer variable?

• A pointer variable is a variable whose value is the address of a
location in memory.

• To declare a pointer variable, you must specify the type of value
that the pointer will point to, for example,

int* ptr; // ptr will hold the address of an int

char* q; // q will hold the address of a char

14

Using a Pointer Variable

int x;

x = 12;

int* ptr;

ptr = &x;

NOTE: Because ptr holds the address of x,

we say that ptr “points to” x

15

2000

12

x

3000

2000

ptr

*: dereference operator

int x;

x = 12;

int* ptr;

ptr = &x;

cout << *ptr;

NOTE: The value pointed to by ptr is denoted by *ptr

16

2000

12

x

3000

2000

ptr

Using the Dereference Operator

int x;

x = 12;

int* ptr;

ptr = &x;

*ptr = 5;

17

2000

12

x

3000

2000

ptr

5

// changes the value at the

address ptr points to 5

Self –Test on Pointers

char ch;

ch = ‘A’;

char* q;

q = &ch;

*q = ‘Z’;

char* p;

p = q;

18

4000

A

ch

5000

4000

q

Z

6000

p

4000

// the rhs has value 4000

// now p and q both point to ch

Using a Pointer to Access the Elements of a
String

char msg[] =“Hello”;

char* ptr;

ptr = msg;

*ptr = ‘M’ ;

ptr++;

*ptr = ‘a’;

19

ptr

‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’

msg

3000

3000

‘M’ ‘a’

3001

Reference Variables

Reference variable = alias for another variable
- Contains the address of a variable (like a pointer)

- No need to perform any dereferencing (unlike a pointer)

- Must be initialized when it is declared

int x = 5;

int &z = x; // z is another name for x

int &y ; //Error: reference must be initialized

cout << x << endl; -> prints 5

cout << z << endl; -> prints 5

z = 9; // same as x = 9;

cout << x << endl; -> prints 9

cout << z << endl; -> prints 9

20

Why Reference Variables

•Are primarily used as function parameters

•Advantages of using references:

• you don’t have to pass the address of a variable

• you don’t have to dereference the variable inside the called function

21

Reference Variables Example

#include <iostream.h>

// Function prototypes

(required in C++)

void p_swap(int *, int *);

void r_swap(int&, int&);

int main (void){

int v = 5, x = 10;

cout << v << x << endl;

p_swap(&v,&x);

cout << v << x << endl;

r_swap(v,x);

cout << v << x << endl;

return 0;

}
22

void r_swap(int &a, int &b)

{

int temp;

temp = a; (2)

a = b; (3)

b = temp;

}

void p_swap(int *a, int *b)

{

int temp;

temp = *a; (2)

*a = *b; (3)

*b = temp;

}

Dynamic Memory Allocation Diagram

23

static data

Stack

Heap

R
un-tim

e allocated

m
em

ory

C
om

pile-tim
e

allocated

m
em

oryProgram

code

High-end

Low-end

Dynamic Memory Allocation

• In C, functions such as malloc() are used to dynamically
allocate memory from the Heap.

• In C++, this is accomplished using the new and delete
operators

• new is used to allocate memory during execution time
• returns a pointer to the address where the object is to be stored

• always returns a pointer to the type that follows the new

24

Operator new Syntax

new DataType

new DataType [IntExpression]

• If memory is available, in an area called the heap (or free
store) new allocates the requested object or array, and
returns a pointer to (address of) the memory allocated.

• Otherwise, program terminates with error message.

• The dynamically allocated object exists until the delete
operator destroys it.

25

Operator new

char* ptr;

ptr = new char;

*ptr = ‘B’;

cout << *ptr;

NOTE: Dynamic data has no variable name

26

2000

???

ptr

5000

5000

‘B’

The NULL Pointer

• There is a pointer constant called the “null pointer”
denoted by NULL

• But NULL is not memory address 0.

•NOTE: It is an error to dereference a pointer whose
value is NULL. Such an error may cause your program
to crash, or behave erratically. It is the programmer’s
job to check for this.

while (ptr != NULL) {

. . . // ok to use *ptr here
}

27

Operator delete Syntax

delete Pointer

delete [] Pointer

• The object or array currently pointed to by Pointer is
deallocated, and the value of Pointer is undefined. The
memory is returned to the free store.

• Good idea to set the pointer to the released
memory to NULL

• Square brackets are used with delete to deallocate a
dynamically allocated array.

28

Operator delete

char* ptr;

ptr = new char;

*ptr = ‘B’;

cout << *ptr;

delete ptr;

29

5000

5000

‘B’

2000

ptr

???

NOTE:
delete deallocates the

memory pointed to by ptr

Example

30

char *ptr ;

ptr = new char[5];

strcpy(ptr, “Bye”);

ptr[0] = ‘u’;

delete [] ptr;

ptr = NULL;

‘B’ ‘y’ ‘e’ ‘\0’

‘u’

ptr
3000

???

6000

6000???NULL

// deallocates the array pointed to by ptr
// ptr itself is not deallocated
// the value of ptr becomes undefined

Pointers and Constants

char* p;
p = new char[20];

char c[] = “Hello”;
const char* pc = c; //pointer to a constant
pc[2] = ‘a’; // error
pc = p;

char *const cp = c; //constant pointer
cp[2] = ‘a’;
cp = p; // error

const char *const cpc = c; //constant pointer to a const
cpc[2] = ‘a’; //error
cpc = p; //error

31

Thank You

32

