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UNIT-I (MARKS-07) AND UNIT-II(MARKS-14) 

UNIT-I                                                                                         Dr. Pradip Kumar Gain 

Syllabus for Unit-I : Metric spaces: sequences in a metric space, Cauchy 

sequences, Complete metric spaces, Cantor’s theorem.  

 

Sequences in a metric space 

DEFINITION: A sequence in a metric space  dX , is a function defined on the set of     

natural numbers   with values in X and is specified by listing its values as 

..,.........,,.........,, 321 nxxxx or as  
1nnx  or as  nx  where nx  is the image of n , n  and is 

known as the nth term of the sequence. 

NOTE : The function stated above is not necessarily one-to-one and therefore, the range set 

of the sequence may be finite or infinite whereas set of all terms of a sequence is always 

infinite. 

EXAMPLES: The range set of the sequence 








n

1
 in R is  ..,.........,,,1

4
1

3
1

2
1 is infinite. The set 

of all terms is ..,.........,,,1
4
1

3
1

2
1  which also infinite.  Again the range set the sequence n)1(  

is  1,1  which is finite. But the set of all terms of a sequence is infinite. 

DEFINITION: Let nx  be a sequence in the metric space  dX , . Let 

 .,...........,,.........,, 321 knnnn  be a strictly increasing sequence of natural numbers. Then the 

sequence  
knx  ie,  ,..........,,.........,,

321 knnnn xxxx  is called a subsequence of the sequence 

 nx .  

EXAMPLES: 

DEFINITION:  A sequence  nx  in a metric space  dX ,  is said to converge to a point Xx , 

if for given 0 , we can find a positive integer m  (depending on ) such that 

),( xxd n , whenever mn  . 

We then write 0),( xxd n as n  or, xxLim n
n




 or, xxn   as n . 

OR 



Equivalently, a sequence  nx  in a metric space  dX ,  is said to converge to a point      

Xx , if for given 0  , we can find a positive integer m ( depending on  ) such that 

),( xSxn   for all mn   where, ),( xS  is a sphere of radius   centred at x . 

EXAMPLE: The the sequence 








n

1
 converge to 0. 

DEFINITION (Cauchy Sequence): A sequence  nx  in a metric space  dX ,  is said to be a 

Cauchy sequence or Fundamental sequence iff for each 0  there exists a positive 

integer p  such that ),( mn xxd  for all pmn , . That is, 0),( mn xxd  as nm, . 

THEOREM 1.1: Every convergent sequence is Cauchy sequence. Converse is not necessarily 

true. 

Proof: Let nx  be a convergent sequence in the metric space  dX , and let xxn  . Hence 

for given 0 , there exists a positive integer p  such that 
2

),(


xxd n  , 
2

),(


xxd m for all 

pmn , . ……………..(1) 

Now ),(),(),( mnmn xxdxxdxxd  [ since d is metric . Triangle inequality holds]  

                          ),(),( xxdxxd mn  [ since d is metric . Symmetric property holds] 

                          
22


 [ by (1) ] 

                            pmn  ,  

Thus ),( mn xxd  for all pmn , . Hence  nx  is a Cauchy sequence in the metric space 

 dX , . 

To show converse is not true let us consider the space X (0, 1] of the real line with usual 

metric. Let us consider the sequence   








 n
n

xn ,
1

. For a given 0 , we choose a 

positive integer )
2

(


p , pmn
mn

xxxxxxd mnmnmn  ,,
11

),(  

                             pmnxxd mn  ,
22

),(


 

                              ),( mn xxd   pmn  ,  

Hence  








 n
n

xn ,
1

 is a Cauchy sequence in X (0, 1]. 

But    








 n
n

xn ,
1

, converges to 0 which is not a point of X (0, 1].  

Thus  









n

xn

1
 is a Cauchy sequence in X but does not converge to any point in X . 



THEOREM 1.2:  Let nx  be a Cauchy sequence in the metric space  dX , . If  nx possesses 

a convergent subsequence  
knx  converging to x , then the sequence   

knx  also converges 

to x . 

Proof: Let  
knx be a convergent subsequence of the Cauchy sequence nx converges to 

Xx . Then for each 0 there exists a positive integer p  such that 
2

),(


xxd
kn  for all 

pnk  ……………..(1). 

Again as  nx  is a Cauchy sequence, for each 0 there exists a positive integer q such that 

2
),(


mn xxd  for all qmn , ………………….(2). 

             Let ),( qpMaxr   

Then ),(),(),( xxdxxdxxd
kk nnnn   [ since d  is metric . Triangle inequality holds] 

                         



22
 for all rn  . 

                          ),( xxd n  for all rn  .  Hence the Cauchy sequence converges to 

Xx . 

THEOREM 1.3:   A Cauchy sequence nx in a  metric space  dX ,  converges If and only if it 

has   a convergent subsequence 
knx . 

Proof: Let  nx be a cauchy sequence converges to Xx . Hence for given 0 , there 

exists a positive integer p  such that ),( xxd n for all pn   and hence ),( xxd
kn  for all 

pnk  . Therefore, the subsequence 
knx  of the cauchy sequence  nx  converges to Xx . 

Conversely, let  
knx  be a convergent subsequence of the cauchy sequence  nx  converges 

to Xx . Then by previous theorem, the cauchy sequence  nx  converges to Xx . 

Complete metric spaces 

DEFINITION: A metric space  dX , is said to be complete if every Cauchy sequence 

in X converges to some point in X . 

The  metric space  dX , is called incomplete if it is not complete. 

 EXAMPLES ( complete metric spaces): 

Ex-1.   Any set X with discrete metric forms a complete metric space. 

Solution : Let  dX , be a metric space with discrete metric d  such that 

yx

yx

if

if
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1

0
),( . Let nx  be a Cauchy sequence in the discrete metric space  dX , . 

Then 
mn

mn
mn

xx

xx

if

if
xxd










1

0
),( . Since as  nx  is a Cauchy sequence, for each 0 there 



exists a positive integer p such that 
2

1
),( mn xxd  for all pmn ,  [taking 

2

1
 ]. Then by 

definition of discrete metric space 0),( pn xxd  n .  

                                                               
pn xx   as n which shows that every Cauchy 

sequence converges to a point of X which is also a term of the sequence. Hence discrete 

metric space X is complete. 

Ex-2.   The real line R  is complete. 

Solution : Let  nx be a cauchy sequence in R . By the definition of Cauchy sequence for 

each 0 there exists a positive integer p such that ),( mn xxd  for all pmn , . Since 

R is a metric space with usual metric, we must have  mnmn xxxxd ),(    pmn , . 

But it follows from the Cauchy’s general principle of convergence of a sequence of real 

numbers that the above situation implies the convergence of a sequence  nx to some point 

Rx . Hence R  is complete. 

Ex-3.  Prove that the space  1,0C of all continuous real valued functions on  1,0 with the 

metric d , defined by   1,0:)()(sup),(  xxgxfgfd , is a complete metric space. 

Solution : Clearly,    01,0:)()(sup),(  xxgxfgfd  

Also 0),( gfd  iff     01,0:)()(sup  xxgxf  

                              Iff  0)()(  xgxf     1,0x  

                             Iff   )()( xgxf            1,0x  

                             Iff   gf    [ non-negative property holds ] 

Also   1,0:)()(sup),(  xxgxfgfd  

                         1,0:)()(sup  xxfxg  

                       ),( fgd   [ symmetric property holds ] 

Also for any three functions f , g , h , we have,   1,0:)()(sup),(  xxgxfgfd  

                                                                                             1,0:)()()()(sup  xxgxhxhxf  

                                                                  1,0:)()(sup  xxhxf   1,0:)()(sup  xxgxh   

                                                                ),(),( ghdhfd   

                                         Thus ),(),(),( ghdhfdgfd  [ Triangle inequality holds] 

Hence   dC ,1,0  is a metric space. 

Let  nf  be a Cauchy sequence in  1,0C . Then for each 0 there exists a positive 

integer p  such that ),( mn ffd , for all pmn , . 

    1,0:)()(sup xxfxf mn , for all pmn , .  

   )()( xfxf mn , for all pmn ,  and for all  1,0x .  Using Cauchy’s condition for 

convergence, we can say that  nf  converges uniformly on  1,0 . If ffn   then f  is also 

continuous on  1,0 . Therefore, the Cauchy sequence  nf  converges to  1,0Cf  .  



Hence  1,0C  is a complete metric space. 

 

EXAMPLES ( incomplete metric spaces): 

Ex-1.  The space X (0, 1] of the real line with usual metric yxyxd ),( , Xyx  , is 

not complete. 

Solution : Let us consider the sequence   
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n

xn ,
1

. For a given 0 , we choose a 

positive integer )
2

(


p , pmn
mn

xxxxxxd mnmnmn  ,,
11

),(  

                             pmnxxd mn  ,
22

),(


 

                              ),( mn xxd  pmn  , .   

Hence  








 n
n

xn ,
1

 is a Cauchy sequence in X (0, 1]. 

But    








 n
n

xn ,
1

, converges to 0 which is not a point of X (0, 1].  

Thus  









n

xn

1
 is a Cauchy sequence in X but does not converge to any point in X . 

Hence X (0, 1] is not complete. 

Ex-2. The set Q  of all rational numbers with usual metric yxyxd ),( , Qyx  ,  is not 

complete. 

Solution : With usual metric yxyxd ),( , Qyx  ,  is metric space. Let us consider the 

sequence  









nnx

3

1
. This is a Cauchy sequence in Q .  










nnx

3

1
 converges to Q0 .  

Again  let us consider a sequence  
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n
n

x
1

1 . This is a Cauchy sequence in Q  but this 

sequence  
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n
n

x
1

1  converge to a point Qe . So every Cauchy sequence in Q  is 

not convergent. Hence ),( dQ  is not complete metric space. 

DEFINITION : A sequence    nF  =  .....,.........,, 321 FFF  of sets is said to be nested if 

....................321  nFFFF That is, if 1 nn FF  n  

 

CANTOR INTERSECTION THEOREM : If  nF  is a nested sequence of non-empty closed 

subsets of metric space  dX ,  such that   0nF as n , then X is complete iff 




1n

nF consists of exactly one point, where  nF denotes the diameter of nF . 



Proof:                                              The condition is necessary 

Let  dX , be a complete metric space and let   nF  =  .....,.........,, 321 FFF  be a nested of 

non-empty closed subsets of X with   0nF as n . We shall show that 


1n

nF  

contains exactly one point.  

Since each    nFn , we can construct a sequence  nx by choosing nFxxx ,......,, 321 . 

That is, nn Fx   , ..,.........3,2,1n  As   0nF  as n , for given 0 there exists 

m  such that  nF  for all mn  …………..(1). Since  nF  is nested, mn FF   for all 

mn  . Hence mn Fx  , for all mn  .  

)(),( mmn Fxxd  , for all mn  . 

 ),( mn xxd , for all mn  . [ using (1) ].  

Hence,  nx  is a Cauchy sequence in nF . That is, in X . Since,  dX ,  is complete metric 

space (given), the sequence  nx  must be convergent. Let it converges to Xx . That is, 

xxn  as n . We shall show that 





1n

nFx . If possible, let 





1n

nFx . This implies that 

x  should not lie in some of the sets .......,.........,, 321 FFF  Let kFx . Since kF is closed and 

kFx ,   0:),(inf),(  kk FyyxdFxd . Let rFxd k ),( . Then ryxd ),( for all kFy . 

Therefore, ),(
2
rxS and kF  are disjoint. Now kn    kn FF      kFxxx  , . . . . .,, 321            

[ since nn Fx   ,........3,2,1n ] 

),(
2
r

n xSx   which is not possible since  nx  converges to Xx .  

Hence 





1n

nFx showing that 


1n

nF is non-empty.  

In order to prove that 


1n

nF contains exactly one point, let us suppose in contrary that 




1n

nF contains two points x  and y .  

Then ),()( 1 yxdF   , ),()( 2 yxdF  , ),()( 3 yxdF  ,……………….  

Since d is metric and so 0),( yxd ,  )( nF  does not tend to 0 which contradicts the fact 

  0nF as n . Therefore, 


1n

nF contains exactly one point. 

The condition is sufficient 

Let us suppose that the given condition is sufficient. We shall show that X  is complete. Let 

 nx  be a Cauchy sequence in X .  

Let us consider for each n ,  .....,.........,, 21  nnnn xxxA .  

That is,  .....,.........,, 3211 xxxA  ,  .....,.........,, 4322 xxxA  ,  .....,.........,, 5433 xxxA  ,……… 



Obviously, ...............321  AAA  and we have, .................. 321  AAA  

Since,  nx  is a Cauchy sequence and   0nA as n , we have,   0nA as n . 

So    ..,.........,, 321 AAAAn   is a nested sequence of closed and non-empty sets in X , 

where   0nA as n . So by hypothesis there exists an Xx  such that 





1n

nAx . 

Now  nnnnn AxAAx   Also nAx . Therefore, )(),( nn Axxd  . Since   0nA , 

0),( nxxd  as n . That is,  xxn  as n . Hence the Cauchy sequence  nx  

converges to Xx . As  nx  is arbitrary it follows that every Cauchy sequence in  dX ,  

converges. Hence  dX ,  is complete metric space. 

 

INSTRUCTION FOR STUDENTS : 

NOTE:  Definition of Cauchy sequence and theorems related to Cauchy sequence , Definition 

of Complete metric space and examples related to Complete metric spaces and Incomplete 

metric spaces are important . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



SEMESTER-VI 
HONOURS 

CORE COURSE--C13T 

UNIT-II    (MARKS-14) 

UNIT-II                                                                                        Dr. Pradip Kumar Gain 

Syllabus for Unit-II : Continuity: Continuous mappings,  Sequential criterion 

and other characterizations of continuity, Uniform continuity, 

Connectedness: Connected subsets of R . Compactness: Sequential 

compactness, Heine-Borel property, totally bounded spaces, finite 

intersection property(FIP), continuous functions on compact sets. 

Homeomorphism. Contraction mappings, Banach fixed point theorem and its 

applications to ordinary differential equations.   

 

Functions/Mappings  

DEFINITION : Let X and Y be two non-empty sets. If there is a rule of correspondence 

f which corresponds each element Xx a unique element Yy , then f is said to be a 

function or mapping or a map from X to Y  or f  maps X  into Y .  

In symbol we write YXf : . In such a case the set X  is called the Domain of f and the 

set Y is called Codomain of f . If f relates Xx  with Yy  , we write )(xfy  . Here x  

is called preimage of y under f and y  is called image of x under f . 

Continuous mappings  

DEFINITION :  Let  dX ,  and  dY ,  be two metric spaces. A function ),(),(: dYdXf  is 

said to be continuous at a point Xa , if and only if for all 0 , chosen arbitrarily, there 

exists a )0( ( depending on   and a ) such that  ))(),((),( afxfdaxd . That is, 

)),(()(),( afSxfaSx YX  . 

The function f is said to be continuous on  dX ,  if and only if it is continuous at each point 

of X . 

REMARKS : It is clear that a function ),(),(: dYdXf  is continuous at a point Xa , if 

and only if for all 0 , chosen arbitrarily, there exists a )0( ( depending on   and a ) 

such that )),(()),(( afSaSf YX  . 

EXAMPLES :  



 

Sequential criterion of continuity 

THEOREM 2.1: Let  dX ,  and  dY ,  be two metric spaces. A function 

),(),(: dYdXf  is said to be continuous at a point Xx , if and only if for all 

sequences  nx  of elements of X converging to the point x  in  dX , , the sequences 

 )( nxf  of elements of Y converge to )(xf  in  dY , . 

Proof :                                             The condition is necessary 

Let us suppose that the function ),(),(: dYdXf   is continuous at a point Xx . We 

shall show that )()( xfxfxx nn   as n . Let 0 , be arbitrarily chosen. Since 

f  is continuous at the point x , there exists a )0(  such that 

 ))(),((),( xfxfdxxd nn . Since xxn   as n in  dX , , corresponding to  

)0(  there exists a natural number m  depending on   such that  ),( xxdmn n . 

Combining the two results above we conclude that  ))(),(( xfxfdmn n , where m  

is a natural number depending on  and hence dependent on 0 . This implies  )( nxf  

converges to )(xf  in  dY , . 

The condition is sufficient 

We shall show that if for all sequences  nx  converging to the point x  in  dX ,  the 

corresponding sequences  )( nxf  converge to )(xf  in  dY , , then f  is continuous at the 

point x . If possible let f  is not continuous at the point x . Then there exists atleast one 

0  such that for all )0(   ),( xxd  but  ))(),(( xfxfd for at least one Xx  . 

Let us consider a sequence of s' given by 
n

1
  for all n . So, corresponding to each 

natural number n , there exists Xx n such that 
n

xxd n

1
),(   but  ))(),(( xfxfd . This 

implies )( nxf does not tend to )(xf  in  dY ,  although xxn   as n in  dX , , which 

is a contradiction to our hypothesis. Hence f  must be continuous at the point x . 

REMARKS : The above theorem shows that convergence of sequence of points remains 

preserved under a continuous map. 

 

From the above theorem the following theorem follows: 

 

THEOREM 2.2 : Let  dX ,  and  dY ,  be two metric spaces. A function 

),(),(: dYdXf  is continuous if and only if for any Xx and for all sequences  nx  

X converging to x  in  dX , , the sequences  )( nxf  converge to )(xf  in  dY , . 

  



Other characterizations of continuity 

THEOREM 2.3: Let  dX ,  and  dY ,  be two metric spaces. A function 

),(),(: dYdXf  is continuous if and only if for any open set G in  dY , , )(1 Gf  is 

open in  dX , . 

Proof : Let us assume ),(),(: dYdXf   is continuous and a set G  is open in  dY , . We 

shall show that its inverse image )(1 Gf   is open in  dX , . If GXf )( , then 

 )(1 Gf  and remains nothing to prove. Let GXf )( , then  )(1 Gf .                 

So, there exists atleast one )(1 Gfx  . This implies Gxf )( . Since G  is open              

)(xf  is an interior point of the set G . So, we can find an 0 such that GxfSY )),((  .                

Since f  is continuous at the point x , there exists a )0(  such that 

 ))(),((),( xfxfdxxd . That is, )),(()(),( xfSxfxSx YX  .                 

That is, GxfSxSf YX  )),(()),((  . That is, )(),( 1 GfxSx X

 . Thus x  is                       

an interior point of the set )(1 Gf   in  dX , . Since )(1 Gfx  is arbitrarily chosen it 

follows that )(1 Gf  is open in  dX , . 

Conversely, we assume that the inverse image of every open set G  in  dY ,  is open in 

 dX , . We shall show that f  is continuous. We choose any Xx , then )(xf is        

uniquely determined. For 0  chosen arbitrarily, )),(( xfSY  is an open set  in  dY , . By 

proposition ))),(((1 xfSf Y

  is open in  dX , . Now, ))),(((1 xfSfx Y

 . So, there exists 

a )0(  such that  ))),(((),( 1 xfSfxSx YX

 . This implies, 

))),((()),(( xfSxSf YX  . That is,  ))(),((),( xfxfdxxd  where )0(  

depends on 0 . Consequently, f  is continuous at x  in  dX , . Since x  is chosen 

arbitrarily , f  is continuous. 

THEOREM 2.4: Let  dX ,  and  dY ,  be two metric spaces. A function 

),(),(: dYdXf  is continuous if and only if for any closed set F in  dY , , )(1 Ff  is 

closed in  dX , . 

Proof : Let us assume ),(),(: dYdXf   is continuous and a set F  is closed in  dY , . So, 

FY \ is open in  dY ,  and therefore, )\(1 FYf   is open in  dX ,  (since f  is continuous ). 

Now, )\(\)( 11 FYfXFf    

          )\()(\ 11 FYfFfX   . So, )(\ 1 FfX   is open in  dX , . Consequently, 

)(1 Ff   is closed in  dX , . 

Conversely, we assume that for all sets F closed in  dY , , )(1 Ff  is closed in  dX , . We 

shall that  f  is continuous. Let G be any open set in  dY , . GY \  is closed in  dY ,  hence 

)\(1 GYf   is closed in  dX , .   Since )(\)\( 11 GfXGYf   , it follows that )(\ 1 GfX   is  



Closed in  dX , . That is, )(1 Gf   is open in  dX , . Therefore, f  is continuous. 

THEOREM 2.5: Let  dX ,  and  dY ,  be two metric spaces. A function 

),(),(: dYdXf  is continuous if and only if for any set XA  , ))(()( AfClClAf  . 

THEOREM 2.6: Let  dX ,  and  dY ,  be two metric spaces. A function 

),(),(: dYdXf  is continuous if and only if for any set XA  ,   )()( 11 ClBfBfCl   .  

Uniform continuity 

 DEFINITION : Let  dX ,  and  dY ,  be two metric spaces. A function ),(),(: dYdXf  is 

said to be uniformly continuous on  dX ,  if and only if corresponding to 0 , chosen 

arbitrarily, there exists a )0( ( depending on alone) such that 

 ))(),((),( 2121 xfxfdxxd  Xxx  21,  

THEOREM 2.7: Let  dX ,  and  dY ,  be two metric spaces and a function 

),(),(: dYdXf  is a uniformly continuous function. If  nx is a Cauchy sequence in 

 dX , then  )( nxf  is a Cauchy sequence in  dY , . 

Proof : Let 0 , be arbitrarily chosen. Since , f  is uniformly continuous in  dX , , there 

exists a )0( ( depending on alone) such that  ))(),((),( 2121 xfxfdxxd  

Xxx  21, ………………..(1). Since  nx is a Cauchy sequence in  dX , , corresponding to 

)0(  there exists a positive integer )( mm  such that   ),( pnn xxdmn , for all 

p ……………………….(2). Combining (1) &(2) we get, mn for all   ),(, pnn xxdp  

  ))(),(( pnn xfxfd . This implies that  )( nxf  is a Cauchy sequence in  dY , . 

Examples of continuous functions: 

EXAMPLES 2.1: Show that the function 
x

xf
1

)(  mapping the real line into itself is 

continuous everywhere on the real line except at the origin.  

EXAMPLES 2.2: Show that the function 
x

xf
1

)(  mapping the real line into itself given by 










otherwisex

Qxx
xf

,1

,
)(  continuous only at the point 

2

1
. 

EXAMPLES 2.3: Let  dX ,  be a metric space and A and B are two non-empty disjoint 

closed sets in X . Prove that there exists a continuous function RXf : such that 










Bx

Ax
xf

,1

,1
)( . 



Connectedness: 

DEFINITION : Let  dX ,  be a metric space and A and B are two subsets of X . The sets 

A and B are said to be separated in if and only if neither has a point in common with the 

closure of another. That is,  )(BClA ,  BACl )( . 

These two conditions can be expressed by      BAClBClA )()( . This is known as 

“Hausdorff-Lennes condition”.  

NOTE : Two sets A and B are may be separated in one metric space but not in other. 

For example, let us consider the set R of all real numbers along usual metric. Then let us 

consider two sets  0 and  1,0 . Now,            01,00)1,0(0 Cl . 

Again, let us consider the set R of all real numbers along with discrete metric. Let us 

consider two sets  0 and  1,0 . The open sphere 








2

1
,0S with centre 0 and radius 

2

1
contains no point of the set  1,0 . Therefore, in this metric space 

          1,001,00Cl ,           1,001,00 Cl  and hence the sets  0 and 

 1,0  are separated in this metric space. 

 

THEOREM 2.8: Let a set G is open in a metric space  dX , . If G is expressed as the union 

of two non-empty separated sets A and B . Then both the sets A and B are open in 

 dX , . 

 

Disconnected Spaces and Disconnected Sets: 

 

DEFINITION : A metric space  dX ,  is said to be  disconnected if and only if it can be 

expressed as the union of two non-empty separated sets. That is, BAX  where 

  BA ,  and  )(BClA ,  BACl )( . 

By theorem 2.8 , both the sets A and B are open in  dX , . 

RESULT : A metric space  dX ,  is disconnected if and only if it can be expressed as the 

union of two non-empty disjoint open sets. 

RESULT : A metric space  dX ,  is disconnected if and only if it can be expressed as the 

union of two non-empty disjoint closed sets. 

DEFINITION : A non-empty subset A of a metric space  dX ,  is disconnected if and only if it 

can be expressed as the union of two non-empty separated sets. That is, 21 AAA  where 

  21 , AA  and  )( 21 AClA ,  21)( AACl . 

THEOREM 2.8: Let  dX ,  be a metric space. Then the following conditions are equivalent :         

(i)  dX ,  is disconnected. 

(ii) X can be expressed as the union of two non-empty disjoint closed sets in  dX , . 



(iii) X can be expressed as the union of two non-empty disjoint open sets in  dX , . 

(iv) there exists a non-empty proper subset of X , which is both open and closed in the 

metric space  dX , . 

 

Connected Spaces and Connected Sets: 

 

DEFINITION : A metric space  dX ,  is said to be  connected if and only if X is not  

expressible  as the union of two non-empty separated sets in  dX , . In other words,  dX ,  

is connected if and only if X is not disconnected. 

DEFINITION : A non-empty subset A of a metric space  dX ,  is connected if and only if it 

cannot be expressed as the union of two non-empty separated sets. 

THEOREM 2.9:  A metric space  dX ,  is connected if and only if X and  are the only sets 

which are both open and closed in  dX , . 

Proof : Let X and  are the only sets which are both open and closed in  dX , . That is, X is 

the only non-empty set which is both open and closed in  dX , . We shall prove that  dX ,  

is connected. If possible, let X  is disconnected. The there exists a disconnection ),( BA of 

 dX , . Obviously, both the sets A and B are non-empty. Since X is open, we find both the 

sets A and B are open. Similarly, both the sets A and B are closed. Thus there exists a non-

empty proper subset A of X  which is both open and closed in  dX , . This is a 

contradiction to our hypothesis that X is the only non-empty set which is both open and 

closed in  dX , . Therefore,  dX ,  is connected. 

Conversely, let  dX ,  is connected. We shall show that X is the only non-empty set which 

is both open and closed in  dX , . If possible, let there exists a non-empty proper subset A  

of X  which is both open and closed in  dX , . Then its complement AXAC \  is non-

empty. Since A  is both open and closed CA  is both closed and open. Therefore,  dX ,  is 

disconnected with a disconnection ),( CAA , which contradicts our assumption. Therefore, 

X is the only non-empty set which is both open and closed in  dX , . 

THEOREM 2.10:  If two connected sets are not separated, their union is connected. 

THEOREM 2.11:  In a metric space the union of two non-disjoint connected sets is 

connected. 

THEOREM 2.12: If every two points of a set A  in a metric space  dX ,  are contained in 

some connected subset of A , then A  is connected set. 

DEFINITION : Let  dX ,  be a metric space. If corresponding to every pair a ,b of distinct 

points of X , there exist separated sets A  and B  in  dX ,  with Aa and Bb , then the 

space  dX ,  is said to be totally disconnected. 

 

 



 

CONNECTED SETS IN THE REAL LINE 
It is clear that like other spaces, the null set   and singleton sets are connected in the real 

line. 

THEOREM 2.13: A set RA  with atleast two points is connected in the real line if and 

only if A  is an interval. 

Proof : Let us assume that A  is an interval. We shall show that A  is connected. Let us 

assume, if possible, A  is disconnected. Then there exist two non-empty sets B and C both 

open and closed in the subspace A such that CBA  . Since B and C  are non-empty 

disjoint sets we choose any Bb and Cc . Since the sets B and C  are disjoint, the points 

b and c are distinct. That is, cb  . Let cb  . Since A  I s an interval and Acb , it follows 

that Axcxb  . So,   CBAcb , . Also,   cby , either By or Cy but 

not both. Let   BcbE  , .  Now Eb . Since E is non-empty and bounded above E  has a 

finite supremum. Let Eu sup . Then cub  . Since Eu sup , no real number less than 

u  can be an upper bound of the  set E . Consequently, corresponding to each )0( , 

however small, there exists a Ev such that uvu  . Thus every neighbourhood 

 ,uS  ofu in the real line contains a point of E . Since BE  , we conclude that every 

neighbourhood of u  contains a point of B different from u . So u is a point of accumulation 

of the set B . Since B is closed, we must have Bu . Also Cu ( Since the sets B and C  are 

disjoint). Hence  cu  . As cub  , it follows that cu  . Again for each )0( , however 

small, Cu  , if cu  . This implies every neighbourhood  ,uS  of the point u in the 

real line contains some point of C  different from u . Therefore, u is a point of accumulation 

of the set C  in the real line. Since the set C is closed, we also have Cu . Thus CBu  , 

which contradicts that the sets B and C  are disjoint. Therefore, A  must be connected. 

Conversely, if possible, let A  is a connected subset of R containing at least two points but 

A  is not an interval. Then there exist three points zyx ,, such that Azx , , Ay where 

zyx  . Now, the sets  yA ,1   and   ,2 yA  re separated open sets in Euclidean 

line. Let AAB  11 , AAB  22 . Then 11 AB   , 22 AB   and consequently 
1B  and 2B  

are separated. As 1Bx  , 2Bz  both 
1B  and 2B  are non-empty. Also 21 BBA   Hence 

A  has a disconnection  21, BB . This is a contradiction to the fact that A  is a connected set. 

Thus A  is an interval. 

EXAMPLE : Show that the set R  of all real numbers is connected in the real line. 

SOLUTION : If possible, let the set R is disconnected in the real line and  BA,  is a 

disconnection of R . Then A , B are non-empty separated stes in thr real line which are 

both open and closed. Since A , B are non-empty, there exists at least one Aa 1  and 

Bb 1 . Since A  and B are disjoint, 11 ba  . So either 11 ba  or 11 ba  . Without loss of 

generality, let 11 ba  . Let  111 ,baI  . Then 0111  abI . Now, R
ba
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11 . Since 



BAR  , 
2

11 ba 
 belongs either to A or to B or belong to both. Also since,  BA , 

2

11 ba 
 can’t belong to both the sets A  and B . If A

ba
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11 , we shall consider the 

interval 
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11 , we shall consider the interval 
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is, 
12 aa   and 

2

11
2

ba
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 . Let  222 ,baI  . Then clearly, 

12 II  and 

2

)( 11
222

ab
abI


 . If we repeat this process, we must find intervals ..,.........,, 543 III  

and so on. In every case, we select the end points na and nb  such that Aan   and Bbn  . 

Thus we get a sequence  nI  of bounded closed intervals, where  nnn baI , . Also 

nn II 1  for all n . And, 0)(
2

1
)( 111




ababI
nnnn as n . Thus   nI  forms 

a nest of closed intervals with diameter tending towards zero in the real line. Nested 

Interval Theorem says that there exists one and only one point   nIc n : . It can 

easily be seen that both the sequences  na  and  nb  are convergent in the real line and 

both converges to c . Since   Aan  , c is a point of accumulation of the set A  in the real 

line. As A  is closed, Ac . Similarly, Bc . Thus  BA , which contradicts the 

disconnection of the real line. Therefore, the set R  of all real numbers is connected in the 

real line. 

EXAMPLE : Let  dX ,  be a connected metric space and ),(),(: dYdXf  . Prove that 

)(Xf is a connected subset of Y .  

SOLUTION : If possible, let the set )(Xf is not connected in the metric space  ),( dY  . Then 

we can find a non-empty proper subset H of )(Xf which is both open and closed in the 

subspace )(Xf . Since H is open and f is continuous, )(1 Hf  is open in  dX , . Again 

since H is closed and f is continuous, )(1 Hf  is closed in  dX , .  

H is proper subset of )(Xf    )()\)((\)( 11 HfHXffHXf . Thus 

)(1 Hf  is a non-empty proper subset of X which is both open and closed in  dX , . So 

 dX ,  not connected, a contradiction. Hence )(Xf must be connected in the metric space  

),( dY  . 

NOTE : In case ),(),(: dYdXf  is an onto continuous map and X  is connected, then 

)(XfY   is connected. 

 

 



Compactness: 
DEFINITION : Let X  be a non-empty set. A family    :AA of subsets of X is said to 

be a cover of X if and only if     :AX , where   is an index set. 

* In such a case, we say that the family    :AA  covers X . 

DEFINITION : Let Y  be a non-empty subset of the set X . A family    :BB of 

subsets of X is said to be a cover of Y if and only if     :BY , where   is an 

index set. 

* In such a case, we say that the family    :BB  covers Y . 

* If there exists a subfamily B of B which also covers Y , we say that B is a subcover of B . 

*A cover is said to be a finite cover(respt. Countable) if it contains finite ( respt. Countable) 

number of sets.  

* If set in the family    :AA are all open sets in a metric space  dX , , A  is said to 

be an open cover of X  in the metric space  dX , .  

NOTE : When a family of subsets of X  in a metric space  dX ,  covers X , the metric 

d plays no role. But in order to be an open cover of X for a family of subsets of X , d must 

have role because, openness of a set depends on the underlying metric. 

EXAMPLE : Show that the family    nnnAA n :, , of bounded open intervals, is an 

open cover of R . 

EXAMPLE : Show that each one of the following families is an open cover of the real line: 

(i)    RxxxA  :,1  

(ii)    xxxA :1,2  

(iii)    nnnA :1,13  

DEFINITION : A metric space  dX ,  is said to be a Lindel o f space if and only if every open 

cover of X  in the metric space  dX , admits of a countable subcover. 

THEOREM 2.14: ( Lindel o f Covering Theorem)  

In the real line every open cover of a set has a countable subcover. 

DEFINITION( Compact Space) : A metric space  dX ,  is said to be a compact metric space if 

and only if every open cover of X  in the metric space  dX , admits of a finite subcover. 

DEFINITION( Heine-Borel Property) : A metric space  dX ,  is said to satisfy Heine-Borel 

Property if and only if every open cover of X  in the metric space  dX , admits of a finite 

subcover. 

DEFINITION( Compact Set) : Let Y be a non-empty set in a metric space  dX , . Then Y is 

said to be a compact set if and only if every open cover of Y in the metric space  dX , has a 

finite subcover. 

NOTE : It is to be noted that by means of open sets, we consider those sets which are open 

in the metric space  dX , . 

 



PROPERTIES OF COMPACT SPACES AND COMPACT SETS : 

THEOREM 2.15: Every closed subset of a compact metric space is compact 

NOTE : If in any metric space we can find at least one closed set which is not compact, we 

can assert that the space is not compact.  

EXAMPLE : Show that the real line is not compact.  

SOLUTION : Let us consider the set Z of integers. We know that in the real line Z  is closed. 

The family    nnnA :, is an open cover of Z  in the real line since 

   :,nnRZ . Since    nnnA :, (cover of Z ) has no finite subcover, 

the set Z  is not compact. So Z  is closed but not compact in the real line. Consequently, the 

real line is not compact.  

THEOREM 2.16: In any metric space  dX , every compact set is closed . 

Combining the theorem 2.15 & theorem 2.16, we get the following theorem: 

THEOREM 2.17: A subset F of a compact metric space  dX , is compact if and only if it is 

closed. 

THEOREM 2.18: Every compact subset of a metric space is bounded. 

 

Heine Borel Theorem 

THEOREM 2.19: ( Heine Borel Theorem ) Every closed and bounded set in the real line is 

compact.  

Converse of Heine Borel Theorem : Every compact set in the real line is both closed and 

bounded. 

 

Finite Intersection Property 

A family    :AA of non-empty sets is said to posses finite intersection property if 

and only if every finite subfamily of    :AA has non-empty intersection.  

That is, for any arbitrary finite collection  
n

AAAA  .,,.........,,
321

 of members of 

   :AA  we have,     niA
i

,......,3,2,1:  

EXAMPLE : The collection    nnnA :, of open intervals satisfy finite intersection 

property. If we consider any finite collection         
pp nnnnnnnn ,,.......,,,,,, 332211  of 

open intervals in R then        nnprnn rr ,,.......,3,2,1:, where 

 
pnnnn ,,.........,min 21 . 

EXAMPLE : The collection   ZnnnB  :1,1 of open intervals does not satisfy finite 

intersection property. If we consider the finite collection     5,3,3,1  of B and we find 

     5,33,1  

THEOREM 2.19: A metric space  dX ,  is compact if and only if every infinite family of non-

empty closed sets in  dX ,  with finite intersection property has non-empty intersection. 

Proof :  

 



CONTINUITY AND COMPACTNESS : 

THEOREM 2.20:  Continuous image of a compact metric space is compact. 

Proof : Let  dX ,  be a compact metric space and f is a continuous mapping from  dX ,  

into another metric space  dY , . If YXfY  )( , then we are to prove that the setY  is a 

compact subset of  dY , . Let    :AA  be any open cover of Y  in  dY , . We are 

to show that it has a finite subcover. By proposition    :AY . Hence we get, 

        :)(:)( 111 AfAfYfX ……………………………………………..(1) 

Since for all  , A is open in  dY ,  and f is continuous, it follows that )(1

Af   is 

open in  dX , , for all  . Then from (1) it follows that    :)(1 Af is an open cover 

of  dX , . Since  dX ,  is compact, it has a finite subcover, say, 

 

iniAf
i

 :,.....,3,2,1:)(1 . We show shall that  iniA
i

 :,.....,3,2,1:  is an 

open cover Y  in  dY , . Let Yy  be arbitrarily chosen. Then there exists at least one 

Xx such that yxf )( . Since  

iniAf
i

 :,.....,3,2,1:)(1 is an open cover of 

 dX , , for some integer )1( nii  , )(1

i
Afx 

 . Hence 
i

Axfy  )( . Therefore, 

  

iniAfY
i

 :,.....,3,2,1:)(1 . Consequently, Y  is a compact set in  dY , .  

Therefore, continuous image of a compact metric space is compact. 

NOTE : In case ),(),(: dYdXf  is an onto continuous map and  dX ,  is compact, then 

 dY ,  is also compact. 

NOTE : If ),(),(: dYdXf  is continuous map and XA   is a compact set in  dX , , 

then YAf )( is also compact in  dY , . 

 

SEQUENTIALLY COMPACT SPACE 

 

DEFINITION : A metric space  dX ,  is said to be sequentially compact if and only if every 

sequence in X has a convergent subsequence. 

DEFINITION : A non-empty set XA   is said to be sequentially compact if and only if every 

sequence in A  has a convergent subsequence. 

EXAMPLE : In the real line the set R of all real numbers is not sequentially compact.  

SOLUTION : Let us consider the sequence  nx in R defined by nxn   for all n . Clearly, 

 nx  has no convergent subsequence. Hence R is not sequentially compact.  

EXAMPLE : In the metric space R with usual metric, the set   R1,0  is not sequentially 

compact.  

SOLUTION : Let us consider the sequence  nx in R defined by 
n

xn

1
  for all n .  nx  

has no subsequence which converges to any point in  1,0 . Hence  1,0 is not sequentially 

compact set. 



NOTE :  However, in the real line the closed interval  1,0 is sequentially compact set. 

 

PROPERTIES OF SEQUENTIALLY COMPACT SETS 

 

THEOREM 2.21: In a metric space a sequentially compact set is both bounded and closed. 

THEOREM 2.22: A sequentially compact metric space is complete. 

Proof : Let  dX ,  be a sequentially compact metric space. In order to prove the theorem it 

is sufficient to show that any Cauchy sequence nx  in  dX , converges in X . Since  nx  is 

a Cauchy sequence in  dX , , corresponding to )0( , chosen arbitrarily, there exists a 

positive integer 
1N , depending on )0( , such that    npn xxd , , for all p and 

1Nn  . Since the metric space  dX , is sequentially compact, the sequence nx must have 

a subsequence which converges in X . Let the subsequence be  
knx and Xxx

kn  as 

kn . So, there exists a positive integer 
2N , depending on )0( , such that 

  xxd
kn , , whenever 2Nnk  . Let  21,max NNN  . Then for all Nnnk  we get, 

       2,,,  xxdxxdxxd
kk nnnn

. Therefore, the sequence nx  converges to 

Xx . Consequently, the metric space  dX ,  is complete. 

THEOREM 2.23: Every compact metric space is sequentially compact. 

 

COMPACTNESS AND TOTAL BOUNDEDNESS 

DEFINITION :  Let  dX , be a metric space and  be an arbitrarily chosen positive quantity. 

A non-empty subset A  of X is said to be an net of  dX , , if the set of all open spheres 

of radius   with centres in A  covers X . 

This implies for any Xx , we can find at least one Aa , such that ),( aSx , that is, 

),( xad . 

EXAMPLE : In the real line the set Z of all integers is an net1  but not a net
2

1
. 

DEFINITION :  Let  dX , be a metric space. A non-empty subset A  of X is said to be totally 

bounded if and only if for every )0( , the set A  has a finite net . 

This implies for any )0( , a finite collection of open spheres of radius  covers A . 

THEOREM 2.24: A metric space  dX ,  is totally bounded if and only if every sequence in 

X has a Cauchy subsequence. 

THEOREM 2.25: A metric space  dX ,  is sequentially compact if and only if it is complete 

and totally bounded.  

Proof : Let the metric space  dX ,  is complete and totally bounded. Since  dX , is  totally 

bounded, every sequence  nx  in  dX , has a Cauchy subsequence ny . Since  dX ,  is 

complete, any Cauchy sequence ny  is convergent. So every sequence  nx  in  dX , has a 

convergent subsequence. Therefore, the metric space  dX ,  is sequentially compact. 



Conversely, let the metric space  dX ,  is sequentially compact. Then every sequence  nx  

in  dX ,  has a convergent subsequence ny . Since the sequence ny  satisfies Cauchy 

property, by theorem 2.24,  it follows that  dX ,  is totally bounded.  

Moreover, as the metric space  dX ,  is sequentially compact, every sequence  nx  in 

 dX , has a convergent subsequence. Specifically, every Cauchy sequence  nx  in 

 dX , has a convergent subsequence. We know that a Cauchy sequence is convergent if 

and only if it has a convergent subsequence. Thus every Cauchy sequence  in  dX ,  is 

convergent. Hence the metric space  dX ,  is complete. 

COROLLARY : Let  dX ,  be a  complete metric space. Then a non-empty subset A  of X  is 

compact if and only if A  is totally bounded in  dX , . 

THEOREM 2.26: Every sequentially compact metric space is compact. 

 

INSTRUCTION FOR STUDENTS : 

All definitions and examples are to be followed. All red marked theorems are important for 

6th semester of the year 2020. 


