
GE3 Computer Science
C and C ++ Lecture series for

B.SC 3rd semester by

Subhadip Mukherjee
Department of computer science

Kharagpur College

LECTURE 15

Inheritance Concept

2

class Rectangle{

private:

int numVertices;

float *xCoord, *yCoord;

public:

void set(float *x, float *y, int nV);

float area();

};

Rectangle
Triangle

Polygon

class Polygon{

private:

int numVertices;

float *xCoord, *yCoord;

public:

void set(float *x, float *y, int nV);

};

class Triangle{

private:

int numVertices;

float *xCoord, *yCoord;

public:

void set(float *x, float *y, int nV);

float area();

};

Inheritance Concept

3

Rectangle
Triangle

Polygon
class Polygon{

protected:

int numVertices;

float *xCoord, float *yCoord;

public:

void set(float *x, float *y, int nV);

};

class Rectangle : public Polygon{

public:

float area();

};

class Rectangle{

protected:

int numVertices;

float *xCoord, float *yCoord;

public:

void set(float *x, float *y, int nV);

float area();

};

Inheritance Concept

4

Rectangle
Triangle

Polygon

class Polygon{

protected:

int numVertices;

float *xCoord, float *yCoord;

public:

void set(float *x, float *y, int nV);

};

class Triangle : public Polygon{

public:

float area();

};

class Triangle{

protected:

int numVertices;

float *xCoord, float *yCoord;

public:

void set(float *x, float *y, int nV);

float area();

};

Inheritance Concept

5

Point

Circle 3D-Point

class Point{

protected:

int x, y;

public:

void set (int a, int b);

};

class Circle : public Point{

private:

double r;

};

class 3D-Point: public Point{

private:

int z;

};

x
y

x
y
r

x
y
z

Inheritance Concept
• Augmenting the original class

• Specializing the original class

6

RealNumber

ComplexNumber

ImaginaryNumber

Rectangle
Triangle

Polygon Point

Circle

real
imag

real imag

3D-Point

Why Inheritance ?

Inheritance is a mechanism for

•building class types from existing class types

•defining new class types to be a
• specialization
•augmentation

of existing types

7

Class Derivation

8

Point

3D-Point

class Point{

protected:

int x, y;

public:

void set (int a, int b);

};

class 3D-Point : public Point{

private:

double z;

… …

};

class Sphere : public 3D-Point{

private:

double r;

… …

};

Sphere

Point is the base class of 3D-Point, while 3D-Point is the base class of Sphere

Access Control Over the Members

•Two levels of access control
over class members
• class definition
• inheritance type

9

base class/ superclass/

parent class

derived class/ subclass/

child class

d
e
ri
v
e
 f

ro
m

m
e
m

b
e
rs

 g
o
e
s
 t
o

class Point{

protected: int x, y;

public: void set(int a, int b);

};

class Circle : public Point{

… …

};

Access Rights of Derived Classes

• The type of inheritance defines the access level for the
members of derived class that are inherited from the base
class

10

private protected public

private - - -

protected private protected protected

public private protected public

Type of Inheritance

A
cce

ss C
o

n
tro

l
fo

r M
e

m
b

e
rs

Class Derivation

11

class daughter : --------- mother{

private: double dPriv;

public: void mFoo ();

};

class mother{

protected: int mProc;

public: int mPubl;

private: int mPriv;

};

class daughter : --------- mother{

private: double dPriv;

public: void dFoo ();

};

void daughter :: dFoo (){

mPriv = 10; //error

mProc = 20;

};

private/protected/public
int main() {

/*….*/

}

class grandDaughter : public daughter {

private: double gPriv;

public: void gFoo ();

};

What to inherit?

• In principle, every member of a base class is inherited by a derived
class
• just with different access permission

• However, there are exceptions for
• constructor and destructor

• operator=() member

• friends

Since all these functions are class-specific

12

Constructor Rules for Derived Classes

The default constructor and the destructor of the
base class are always called when a new object of
a derived class is created or destroyed.

13

class A {

public:

A ()

{cout<< “A:default”<<endl;}

A (int a)

{cout<<“A:parameter”<<endl;}

};

class B : public A

{

public:

B (int a)

{cout<<“B”<<endl;}

};

B test(1);
A:default
B

output:

Constructor Rules for Derived Classes
You can also specify an constructor of the base
class other than the default constructor

14

class A {

public:

A ()

{cout<< “A:default”<<endl;}

A (int a)

{cout<<“A:parameter”<<endl;}

};

class C : public A {

public:

C (int a) : A(a)

{cout<<“C”<<endl;}

};

C test(1);
A:parameter
C

output:

DerivedClassCon (derivedClass args) : BaseClassCon (baseClass args)
{ DerivedClass constructor body }

Define its Own Members

15

Point

Circle

class Point{

protected:

int x, y;

public:

void set(int a, int b);

};

class Circle : public Point{

private:

double r;

public:

void set_r(double c);

};

x
y

x
y
r

class Circle{

protected:

int x, y;

private:

double r;

public:

void set(int a, int b);

void set_r(double c);

};

The derived class can also define
its own members, in addition to
the members inherited from the
base class

Even more …

• A derived class can override methods defined in its parent
class. With overriding,
• the method in the subclass has the identical signature to the

method in the base class.

• a subclass implements its own version of a base class method.

16

class A {

protected:

int x, y;

public:

void print ()

{cout<<“From A”<<endl;}

};

class B : public A {

public:

void print ()

{cout<<“From B”<<endl;}

};

17

class Point{

protected:

int x, y;

public:

void set(int a, int b)

{x=a; y=b;}

void foo ();

void print();

};

class Circle : public Point{

private: double r;

public:

void set (int a, int b, double c) {

Point :: set(a, b); //same name function call

r = c;

}

void print(); };

Access a Method

Circle C;

C.set(10,10,100); // from class Circle

C.foo (); // from base class Point

C.print(); // from class Circle

Point A;

A.set(30,50); // from base class Point

A.print(); // from base class Point

Polymorphism – An Introduction

• noun, the quality or state of being able to assume different forms - Webster

• An essential feature of an OO Language

• It builds upon Inheritance

• noun, the quality or state of being able to assume different forms - Webster

• An essential feature of an OO Language

• It builds upon Inheritance

• Allows run-time interpretation of object type for a given class hierarchy
• Also Known as “Late Binding”

• Implemented in C++ using virtual functions

18

Static Binding

• When the type of a formal parameter is a parent class, the argument
used can be:

the same type as the formal parameter,

or,

any derived class type.

• Static binding is the compile-time determination of which
function to call for a particular object based on the type of
the formal parameter

• When pass-by-value is used, static binding occurs

19

Dynamic Binding

• Is the run-time determination of which function to call for a
particular object of a derived class based on the type of the
argument

• Declaring a member function to be virtual instructs the
compiler to generate code that guarantees dynamic binding

• Dynamic binding requires pass-by-reference

20

Virtual Functions

• Virtual Functions overcome the problem of run time object
determination

• Keyword virtual instructs the compiler to use late binding and delay
the object interpretation

• How ?

• Define a virtual function in the base class. The word virtual appears
only in the base class

• If a base class declares a virtual function, it must implement that
function, even if the body is empty

• Virtual function in base class stays virtual in all the derived classes

• It can be overridden in the derived classes

• But, a derived class is not required to re-implement a virtual
function. If it does not, the base class version is used

21

Abstract Classes & Pure Virtual Functions
• Some classes exist logically but not physically.

• Example : Shape
• Shape s; // Legal but silly..!! : “Shapeless shape”

• Shape makes sense only as a base of some classes derived from it. Serves as a
“category”

• Hence instantiation of such a class must be prevented

22

class Shape //Abstract

{

public :

//Pure virtual Function

virtual void draw() = 0;

}

A class with one or more pure virtual
functions is an Abstract Class

Objects of abstract class can’t be
created

Shape s; // error : variable of an abstract class

Example

23

Shape

virtual void draw()

Circle

public void draw()

Triangle

public void draw()

• A pure virtual function not defined in the derived class remains a pure
virtual function.

• Hence derived class also becomes abstract

24

class Circle : public Shape { //No draw() - Abstract

public :

void print(){

cout << “I am a circle” << endl;

}

class Rectangle : public Shape {

public :

void draw(){ // Override Shape::draw()

cout << “Drawing Rectangle” << endl;

}

Rectangle r; // Valid

Circle c; // error : variable of an abstract class

Thank You

25

