2.1 Errors in Measurement and Least Count

To get some overview of error, least count and significant figures, let us have some examples,

© Example 2.1 Let us use u centimeter scale (on which only centimeter scales
are there) to measure a length AB.

A Vom0 7,

' I T
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Fig. 2.1
From the figure, we can see that length ABis more than T em and less than 8 cm.
In this case, Least Count (LC) of this centimeter scale is 1 cm, s it can measure
accurately upto centimeters only. If we note down the length (1) of line ABas L =7 cm

then moximum uncertainty or maximum possible error in L can be 1 em (= LC),
because this scale can measure accurately only upto 1 cm.

Example 2.2 Let us now use a millimeter scale (on which millimeter marks
are there). This iz also our normal meter scale which we use in our routine life.
From the figure, we can see that length AB is more than

A7 B
3.3 emand less than 5.4 cm. If we note down the length, et s
1 2 2 4
l=AB=3%4cm |
Then, this measurement has two significant figures 3 and 4 in Fig. 2.2
(] (&4

which 3 iz absolutely correct and 4 is reasonably correct (doubtful). Least count of
this scale is 0.1 cm because this scale can measure accurately only upto 0.1 cm.
Further, maximum uncertainty or maximum possible error in | can also be 0.1 cm.

 INTRODUCTORY EXERCISE 2.1

1. 1f we measure a length/ =6.24 crn with the help of a vernier callipers, then
(z2) What is least count of vernier callipers 7
(b) How many significant figures are there in the measured length ?
(c) YWWhich digits are absolutely correct and which is/are doubtful ?

2. If we measure a length/ =3.267 cm with the help of a screw gauge, then
(2) What iz maximum uncertainty or maximum possible error in/ ?
(b) How many significant figures are there in the measured length ?
(c) Which digits are absolutely correct and which is/are doubtful ?

2.2 Significant Figures
From example 2.2, we can conclude that:

“In a measured quantity, significant figures are the digits which are absolutely correct plus the first
uncertain digit".
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Rules for Counting Significant Figures
(Rule 1] All non-zero digits arc significant. For example, 126.28 has five significant figures.

'Rule 2| The zeros appearing between two non-zero digits are significant. For example, 6,025 has
four significant figures.

|Rule 3 Trailing zeros after decimal places are significant. Mcasurement /=6.400 cm has four

significant figures. Let us take an example in its support.

Table 2.1
Measurement Accuracy I lies between (in cm) Slﬁgg;gzm Remarks
/S04 e 0.1 cm 63-65  Two
/=16.40 cm 0.01 cm’ 6.39 - 6.41 ~ Three Cloger
/ =6.400 cm 0.001 cm 6.399 - 6.401 Four more closer

Thus, the significant figures depend on the accuracy of measurement. More the number of si gnificant
figures, more accurate is the measurement.

'Rule 4] The powers of ten are not counted as significant figures. For example, 1.4 <1 077 has only
two significant figures 1 and 4.

'Rule 5| If a measurement is less than one, then all zeros occurring to the left of last non-zero digit

| E—————

are not significant. For example, 0.0042 has two significant figures 4 and 2.

'Rule 6| Change in units of measurement of a quantity does not change the number of significant

figures. Suppose a measurement was done using mm scale and we get /=72 mm (two significant
figures).

We can write this measurement in other units also (without changing the number of significant
figures) : , '

; 7.2 cm — Two significant figures.
0.072 m — Two significant figures.
0.000072km — Two significant figures.
72%x10" nm  — Two significant figures

-t

”Zl;!e]j The terminal or trailing zeros in a number without a decimal point are not significant. This
also sometimes arises due to change of unit.

For example, 264 m = 26400 cm = 264000 mm

All have only three significant figures 2, 6 and 4. All trailing zeros are not significant.

Zeroes at the end of a number are significant only if they are behind a decimal point as in Rule-3.
Otherwise, it is impossible to tell if they are significant. For example, in the number 8200, it is not
clear if the zeros are significant or not. The number of significant digits in 8200 is at least two, but
could be three or four. To avoid uncertainty, use scientific notation to place significant zeros behind a
decimal point

8.200 x10° has four significant digits.
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8.20 X 10° has three significant digits.
8.2 x10° has two significant digits.

Therefore, if it is not expressed in scientific notations, then write least number of significant digits,
Hence, in the number 8200, take significant digits as two.

[Rule 8] Exact measurements have infinite number of significant figures. For example,
10 bananas in a basket
46 students in a class
speed of light in vacuum =299,792,458 m/s (exact)

22
T= = (exact)

All these measurements have infinite number of significant figures.

© Example 2.3 Table 2.2
Measured value Number of significant figures ~ Rule number’

12376 cm 5 1

6024.7 cm 5 2

0.071 cm 2 5

4100 cm 2 7

2.40 cm 3 3

1.60 x 10" km 3 4

INTRODUCTORY EXERCISE 2.2
(1 Cdunt total number of signiﬁCént figures in the following measurements:
(a)4.080cm . (b)0.079m (c) 950
(d) 10.00 cm (e) 4.07080 (f) 7.090 x 10°

2.3 Rounding Off a Digit

Following are the rules for rounding off a measurement :

T_I—?:fﬁé—:l— If the number lying to the right of cut off digit is less than 5, then the cuf off digit is retained
as such. However, if it is more than 5, then the cut off digit is increased by 1.
For example, x =6.241is rounded off to 6.2 to two significant digits and x = 5.328 is rounded offto5.33
to three significant digits.

1 Ruleﬂ If the digit to be dropped is 5 followed by dlgltS other than zéro, then the preceding digit is
increased by 1.
For example, x =14.252 is rounded off to x =14.3 to three significant digits.

L Rule ule 3| If the digit to be dropped is 31mply Sor 5 followed by zeros, then the preceding digit it left
unchanged if it is even,

For example, x =6.250 or x =6.25 becomes x = 6.2 after rounding off to two significant digits.
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| Rule 4| 1fthe digit to be dropped is 5 or § followed by zeros, then the preceding digit is raised by one
if it is odd.
For example, x = 6,350 or x = 6,35 becomes x = 6.4 afler rounding, off to (wo significant digits.

© Example 2.4 Table 2.3

Measured value After rounding off to throe significant digits Rule

- 7.364 7.36 1

o rser 7.87 1

83251 - 8 2

o ems 0.44 | | 3

94450 | 9 | A S 3-

w1678 Ay, o 15. wdl @

15.7500 158 4

INTRODUCTORY EXERCISE 2.

1. Round off the following numbers to three significant figures :
(a) 24572 (b) 24.937 (c) 36.350 (d)42.450 x 10°
2. Round 742396 to four, three and two significant digits.

2.4 Algebraic Operations with Significant Figures

The final result shall have significant figurcs corresponding to their number in the least accurate
ved. To understand this, let us consider a chain of which all links are strong except the
he weakest link. Thus, the strength of the chain cannot be

variable invol
one. The chain will obviously break at t
more than the strength of the weakest link in the chain.

Addition and Subtraction
n the measured values to be added or subtracted the least number of digits after the decimal

Suppose, i
also, the number of digits after the decimal should be n.

is n. Then, in the sum or difference

© Example 2.5 1.2 +3.45+6.789=11.439 =11.4
Here, the least number of significant digits after the decimal is one. Hence, the result
will be 11.4 (when rounded off to smallest number of decimal places).

© Example 2.6 12.63-10.2= 2.48 = 2.4

Multiplication or Division

Suppose in the measured values t
" Then in the product or quotient,

o be multiplied or divided the lcast number of significant digits be n.
the number of significant digits should also be n.

© Example 2.7 1.2 x36.72 = 44.064 = 44
The least number of significant digits in the measured values are two. Hence, the result

when rounded off to two significant digits become 44. Therefore, the answer is 44.
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1101 ms™!

== 107.94117647 = 108
10.2 ms™

© Example 2.8

; -2
© Example 2.9 Find, volume of a cube of side a =1.4 X107 m.
Solution Volume V = 4>

— —-6_3
=(14x107)x (14 x 1072 )x (1.4 x 102 )= 2.744 x 105 m
Since, each value of @ has two si

gnificant figures. Hence, we will round off the result to two
significant figures.

V=27x10"m? An;,
© Example 210 Radiys of a wire is 2.50 mm. The length of the wire is 50.0 ¢,

If mass of wire was measyred as 25 g, then find the density of wire in correct
’ significant figures.

Given, 1t = 3.14, exact]
Solution Given,

r=2.50 mm (three significant figures)
=0.250 cm (three significant figures;
Note Change in the units of measurement of g quantity does not change the number of significant figures
Further given that, X ’
[=50.0 cm (three significant figures)
m=25gm (two significant figures)
T = 3.14 exact | (infinite significant figures)
_m_ m
2y
bt 'y 25
=2.5477 g/cm?
But in the measured values, least number of significant figures are two. Hence, we will round off
the result to two significant figures.

p=2.5g/cm3 Ans.

INTRODUCTORY EXERCISE 2.4

1. Round to the appropriate number of signifi
(2)13.214 + 234 6 + 7.0350 + 6.38
(b) 1247 + 134.5 4 450 + 78

2. Simplify and round to the a
(@)16.235x0.217 x5
(b)0.00435 x 4.6

T et tstcsvcssmncs vyt s msmect o e germ e,

cant digits

ppropriate number of significant digits

]
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2.5 Error Analysis

Wc; have stu_died in the above articles that no measurement is perfect. Every instrument can measure
upto a certain accuracy called Least Count (LC).

Least Count
The smallest measurement that can be measured accurately by an instrument is called its least count.

\‘;lhstrqn\'ugn*t\ -~ ltsleastcount
mm scale 1mm
Vernier callipers 0.1 mm
Screw gauge 0.01 mm
Stop watch 0.1 sec o
Temperature thermometer 1°C

Permissible Error due to Least Count

Error in measurement due to the limitation (or least
error. Least count of a millimeter scale is 1 mm. T
measurement of a length by a millimeter scale may be 1 mm.

If we measure a length /=26 mm. Then, maximum value of true value may be (26 + 1) mm =27 mm

and minimum value of true value may be (26 —1) mm =25 mm.

count) of the instrument is called permissible
herefore, maximum permissible error in the

Thus, we can write it like,
| [=(26+1) mm

r instrument we measure a length =24.6 mm, then the maximum permissible error
0.1 mm. So, we can write the measurement like,

[=(24.6£0.1) mm

If from any othe
(or least count) from this instrument is

Classification of Errors
Errors can be classified in two Ways. First class
error and random errors fall in this group. Secpn
Absolute error, mean absolute error and relative (or

discuss them separately.

Systematic Error

Systematic errors arc th
minimised. Following are

ification is based on the cause of error. Systematic
d classification is based on the magnitude of errors.
fractional) error lie on this group. Now, let us

e errors whose causes are known to us. Such errors can therefore be

few causes of these errors :

(a) Instrumental errors may be due to eqoneous instrum !
more accurate instruments and applying z€ro correction, when required.

(b) Sometimes errors arise on account of ignoring certain facts. For example in measuripg time period

of simple pendulum error may creep because no consideration is taken of air resistance. These
errors can be reduced by applying proper corrections to the formula used. .

(c) Change in temperature pressure, humidity, etc., may also sometimes cause errors in the result.

Relevant corrections can be made to minimiseé their effects.

ments. These errors can be reduced by using
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Random Error

The causes of random errors are not known. Hence, it is not possible to rsfnov:ft:es?n:g;splitel .

These errors may arise due to a variety of reasons. For exgmplg the rea r;r;gv o e labzr :a
ibrati in the building due to persons ato

balance may change by the vibrations caused in ding : .

or vehicles running nearby. The random errors can be minimized by repeating the observation 3 larg,

number of times and taking the arithmetic mean of all the observations. The mean value would p,
very close to the most accurate reading. Thus,

_al +a2 +...+an

amean -

n

Absolute Error

The difference between the true value

and the measured value of a quantity is called an absolute error
Usually the mean value o "

is taken as the true value. So, if

_4 tay+..+a,

m
n

Then by definition, absolute errors in the measured values of the quantity are,
Aay =a,, —a, ,
Aaz = am - a2

Aan =a, —a,
Absolute error may be positive or negative.

Mean Absolute Error

e erssereres, -
S — e

mean and a, — Aamean :

Relative or Fractional Error

The ratio of mean absolute erro

, r to the meg : .
fractional error. Thus, 1 value of the Quantity Mmeasured is called relative or

Relative error = Aa%

y .G,

Qpn

(
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© Example 2.11 The diameter of a wire as measured by screw gauge was found
to be 2.620, 2.625, 2.630, 2.628 and 2.626 cm. Calculate

(a) mean value of diameter (b) absolute error in each measurement
(c) mean absolute error (d) fractional error
(e) percentage error (f) Express the result in terms of percentage error

Solution (a) Mean value of diameter
= 2.620+ 2.625+ 2.630+ 2.628 + 2.626

a m 5

=2.6258cm :
=2.626cm (rounding off to three decimal places)

(b) Taking a,, as the true value, the absolute errors in different observations are,
Aa; =2.626—2.620="+ 0.006cm
Aa, =2.626—2.625=+ 0.001cm
Aa; =2.626—2.630=— 0.004 cm
Aa, =2.626—2.628=— 0.002cm
Aas =2.626—2.626= 0.000cm

(c) Mean absolute error,
|Aay |+ Ay |+ |Aay |+ |Aay [+ |Aas |

Aa mean 5
_0.006+ 0.001+ 0.004 + 0.002 + 0.000
S
=0.0026=0.003 (rounding off to three decimal places)
Aa + 0.003
ional r=+ —=% = == 0.001
(d) Fractional erro ; > 626

m
(e) Percentage error —+0.001x 100==%0.1%

(f) Diameter of wire can be written as,
d=2.626%0.1%

Combination of Errors
Errors in Sum or Difference

Letx=a*xb
Further, let Aa is the absolute error in the measurement 0
he measurement of x.

of b and Ax is the absolute error int
Then, x+Ax=(aiAa)i(biAb)

=(aib)i(iAaiAb)
— x + (£ Aa £ Ab)
Ax=tAa + Ab
— Ab), (Aa + Ab), (Aa

f a, Abthe absolute error in the measurement

or

The four possible values of Ax are (Aa — Ab) and (-Aa + Ab):
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Therefore, the maximum absolute error In X 15,
Ax =+ (Aa + AD)

i.e. the maxi o
errors in the individual quantities.

2 Exa‘"p e 2.12 The volum 107 ] to be
two bodies are measured \ |
V, = (10’2 +.(1) ()2) cme3 a;l‘l,d Vezs — (64_. __+001) cm3. Calculate sum and dzzference n
1 . —_ - -

volumes with error limits.
3
Solution V, =(10.2%0.02)cm

and v, =(64%0.01)cm’
=+ (0.02+0.01)em® =+ 0.03 cm?
V, +V, = (102+ 6.4)cm® = 16.6cm’
and ' V, -V, =(102- 6.4)cm® = 3.8cm’
Hence, sum of volumes = (16.6 £ 0.03) cm’
and difference of volumes = (3.8 % 0.03) cm?

Errors in a Product
Letx=ab

Then, ' (x £Ax) = (a £ Aa) (b £ Ab)

or x(li‘g)=ab(li£) (li&)
x) a - b

Ax Ab  Aa  Aa Ab
or 1i"—=li—_—'_’—§—— —_— =ab
. X W b=y g b (as.x=al
e RN
X a b a b
Aa Ab . .
Here, = 5 1s a small quantity, so can be neglected.
Hence, i£=i£+£

a b

X
Aa _Ab) (Aa  Ab
(7_7)’(‘*+N)and(—ﬂ_ﬁ)
a'" b ;

-

Possible values of & are (ﬂ + &
X a b

| | a b
Hence, maximum possible value of

Therefore, maximum fracti uin
efore, actional error in prog .
. . uc iti .
fractional errors ip the individyal quantitieps Lo (or e 7 "
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Errors in Division

Let . —

Then, xtAx=-

or _
| * b(li——lz)
b
21 :
or (uﬁ):(lié‘i (u-éé) (asx=ﬁ]
X a b b
Ab

T a b
or 1i£=1ié£¢_éiéﬂ._A_b
% a b a b
Aa Ab )
Here, = > is small quantity, so can be neglected. Therefore,
a
Ax Aa _ Ab
to— =t ——t—
X a b

, Aa Ab\ (Aa  Ab Aa Ab Aa Ab
Possible values of —are 5 )’ J|-—-—1and |- — + > Therefore, the
. X \a /

maximum value of

Axt| (X;l Ab)
— =+ —+—
x a b

rror in division of two quantities is equal to the sum of fra

or the maximum value of fractional € slional
errors in the individual quantities.

Error in Quantity Raised to Some Power

= f’[;;, Then, In (x)=nln (@) —mn (b)

Let, x

Differentiating both sides, We get
dx da db

b

_—-:n.———-—m
X a

| error we may write,

Aa _
ié_x.:in———+m
X a

In terms of fractiona
‘ Ab

b
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Therefore, maximum value of

e . | o p
Note Errors in product and division can also be obtained by taking logarithm on both sides (ln X=abory=" J
and then differentiating.

i él:ﬂ:(né—(iiﬂn—-i)
X

a b

b

© Example 2.13 The mass and density of a solid sphere are measured to be

(12.4 £0.1) kg and (4.6 +£0.2) kg/m®. Calculate the volume of the sphere with

error limits.

Solution Here, m+ Am= (1241 0.1) kg

and PEAp=(4.6%0.2)kg/m?
2.4
Volume Ve = _l_
p 4.6
=2.69m’ =2.7m>
/
Now, e =% é’—" + ﬂ)
V m p
(
or AV =+ ﬂ+ﬂ)xV
\m p
/ |
=it ﬂﬁ-%)x2.7=i0.14
\124 4.6

VAV =(2.740.14)m?

© Example 2.14 Calculate

percentage error in dete
pendulum

T =9n l

g
where, l and g are measured with + 1% and + 9% .

Solution T =2 l

g

or T=(2n)(1)+l/2(g)-l/2

Taking logarithm of both sides, we have

In (T)=1In (21t)+—; (In7)- G‘) In (g)

Here, 2t is a constant, therefore In (21)is also
Differentiating Eq. (i), we have

1 1(1 1{:1
—dT=0+~| - N— | - y

a constant,

(rounding off to one decimal place)

rmination of time period of a

(1)
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dT
or (—) = maximum value of | + 1 F
max 21

T
1
1 (ﬂ) 1%
2\ 1 2\ g
This can also be written as

AT
(——xmo) =_1_[éfx100]+1 A2 100
r mx 201 2| g

or percentage error in time period

=% B (percentage error in /) + % (percentage error in g)]

Ans.

=i[lx1+l><2 =+1.5%
2 2

Final Touch Points

Order of Magnitude In physics, a number of tim
wide range. For example, size of universe, mass of sun, radius of a

the powers of ten method. In this method, each number is expresse
m is a positive or negative integer.If n is less than or equal to 5, t
if n is greater than 5 then order of number is10™*".

For example, diameter of the sun is 1.39 x10° m. Therefore, the diame

10°masnori.39<5.

es we come across quantities which vary over a
nucleus etc. In this case, we usé
dasn x10™, where1<n <10and
hen order of number is 10" and

ter of the sun is of the order of



Solved Examples

i ignificant digits.
© Example 1 Round off 0.07284 to four, three and two significant dig

ey ) (four significant digit)
Solution ' (three significant digiy
060077238 (two significant digitg)

sl giLs.
© Example 2 Round off 231.45 to foz;r;ltgree and‘ two signif lca’:ﬁofié; lignificant digit
Solution ' 231' (three significant digits
b vzl (two significant digits)

© Example 3 Three measurements are g — 483, b =73.67 and c = 15.67. Find the
value X2 to correct significant figures.
c .

i ab 483 x 73.67
Solution ¢ 1567
=2270.7472
=2.27 x 10° Ans.
Note The result is rounded off to least number of significant figures in the inen measurement i.e. 3 (in 483).

© Example 4 Three measur
valuea - b

Solution

ements are, a =25.6, b =211 and ¢ =2.43. Find the
= cto correct significant figures.

a-— b—c=25.6—21.1 —-2.43

=2.07=2.1 Ans.
Note Inthe measurements, least number of signi

ficant digits after the decimal is one (in 25.6 and 21 .1 ). Hence,
the result will also pe rounded off to one decima| place.

Solution Given, /=217

m, r=0.46 mm = 0.046 crﬁ
Volume of wire V = qr2]

22
=~ 0.046)% 21.7)
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© Example .6 The radius of a sphere is measured to be (1.2 % 0.2 ) em. Calculate its
volume with error limits.

Solution Volume, V = % b wd (g?-) (1.2)"
: 2\ )a

=724 cm® =172 em”
Further, AV 3 (_/.\_r)
Vv r

[ BEN e
AV =3 (_L}_r_)v _3%0.2x7.2
r 1.2
=3.6 cm”

V = (7.2 % 3.6) cm”

Example 7 Calculate equivalent resistance of two resistors B and R, in
parallel where, Ry =(6£0.2) ohm and R, =(3 £0.1) ohm
Solution In parallel,

1id 4l 1 ; .
st Ol N pot¥
R R R )
or, IC=-,—-I-£'--I—6—‘,‘"—-=@@=2 ohm

R+ R, 6+3

Differentiating Bq. (i), we have

R

gsible error in equivalent resistance may he

AR = é’-i‘—+9-’§é (R%
R R,

Therefore, maximum permi

; 0.2 0.1
AR=|—+ —=
[(6% @)*
=0.07 ohm
R=(2+0.07) ohm

Substituting the values we get,
} @)

Ans.



